Neural Network Toolbox 5
User’'s Guide

Howard Demuth
Mark Beale

Martin Hagan

MATLAB

‘\The MathWorks

Meférqﬁl‘lg the pace DFB‘I‘?QH‘IGB'H;I'IQ and sciance

X LB

How to Contact The MathWorks

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www .mathworks.com/contact_TS.html Technical support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Neural Network Toolbox User’s Guide
© COPYRIGHT 2005-2007 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are trademarks
of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks
of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

June 1992
April 1993
January 1997
July 1997
January 1998
September 2000
June 2001

July 2002
January 2003
June 2004
October 2004
October 2004
March 2005
March 2006
September 2006
March 2007
September 2007

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Sixth printing
Seventh printing
Online only
Online only
Online only
Online only
Eighth printing
Online only
Online only
Ninth printing
Online only
Online only

Revised for Version 3 (Release 11)
Revised for Version 4 (Release 12)

Minor revisions (Release 12.1)

Minor revisions (Release 13)

Minor revisions (Release 13SP1)

Revised for Version 4.0.3 (Release 14)
Revised for Version 4.0.4 (Release 14SP1)
Revised for Version 4.0.4

Revised for Version 4.0.5 (Release 14SP2)
Revised for Version 5.0 (Release 2006a)
Minor revisions (Release 2006b)

Minor revisions (Release 2007a)

Revised for Version 5.1 (Release 2007b)

Acknowledgments

The authors would like to thank

Joe Hicklin of The MathWorks for getting Howard into neural network
research years ago at the University of Idaho, for encouraging Howard to write
the toolbox, for providing crucial help in getting the first toolbox Version 1.0 out
the door, for continuing to help with the toolbox in many ways, and for being
such a good friend.

Roy Lurie of The MathWorks for his continued enthusiasm for the
possibilities for Neural Network Toolbox.

Jim Tung of The MathWorks for his long-term support for this project.

Liz Callanan of The MathWorks for getting us off to such a good start with
Neural Network Toolbox Version 1.0.

Pascal Gahinet of The MathWorks for helping us craft a good schedule for
Neural Network Toolbox Releases SP3 and SP4.

Madan Bharadwaj of The MathWorks for his help with planning, demos, and
gecks, for getting user feedback, and for helping with many other toolbox
matters.

Ronelle Landy of The MathWorks for help with gecks and other
programming issues.

Mark Haseltine of The MathWorks for his help with the BaT system and for
geeking us on track with conference calls.

Rajiv Singh of The MathWorks for his help with gecks and BaT problems.
Bill Balint of The MathWorks for his help with gecks.

Matthew Simoneau of The MathWorks for his help with demos, test suite
routines, for getting user feedback, and for helping with other toolbox matters.

Jane Carmody of The MathWorks for editing help and for always being at her
phone to help with documentation problems.

Lisl Urban, Peg Theriault, Christi-Anne Plough, and Donna Sullivan of
The MathWorks for their editing and other help with the Mac document.

Elana Person and Jane Price of The MathWorks for getting constructive
user feedback on the toolbox document and its graphical user interface.

Susan Murdock of The MathWorks for keeping us honest with schedules.

Sean McCarthy of The MathWorks for his many questions from users about
the toolbox operation.

Orlando De Jesus of Oklahoma State University for his excellent work in
developing and programming the dynamic training algorithms described in
Chapter 6, “Dynamic Networks,” and in programming the neural network
controllers described in Chapter 7, “Control Systems.”

Bernice Hewitt for her wise New Zealand counsel, encouragement, and tea,
and for the company of her cats Tiny and Mr. Britches.

Joan Pilgram for her business help, general support, and good cheer.

Leah Knerr for encouraging and supporting Mark. Teri Beale for her
encouragement and for taking care of Mark’s three greatest inspirations,
Valerie, Asia, and Drake, while he worked on this toolbox.

Martin Hagan, Howard Demuth, and Mark Beale for permission to include
various problems, demonstrations, and other material from Neural Network
Design, January, 1996.

Neural Network Design Book

Neural Network Toolbox authors have written a textbook, Neural Network
Design (Hagan, Demuth, and Beale, ISBN 0-9717321-0-8). The book presents
the theory of neural networks, discusses their design and application, and
makes considerable use of MATLAB® and Neural Network Toolbox.
Demonstration programs from the book are used in various chapters of this
user’s guide. (You can find all the book demonstration programs in Neural
Network Toolbox by typing nnd.)

This book can be obtained from John Stovall at (303) 492-3648, or by e-mail at
John.Stovall@colorado.edu.

The book has

¢ An Instructor’s Manual for those who adopt the book for a class
¢ Transparency Masters for class use
If you are teaching a class and want an Instructor’s Manual (with solutions to

the book exercises), contact John Stovall at (303) 492-3648, or by e-mail at
John.Stovall@colorado.edu.

To look at sample chapters of the book and to obtain Transparency Masters, go
directly to the Neural Network Design page at

http://hagan.okstate.edu/nnd.html

Once there, you can obtain sample book chapters in PDF format and you can
download the Transparency Masters by clicking “Transparency
Masters (3.6MB).”

You can get the Transparency Masters in PowerPoint or PDF format.

Contents

Getting Started

What Are Neural Networks? 1-2
Fittinga Function 1-3
Using Command-Line Functions 1-3
Using the Neural Network Fitting Tool GUT 1-7
Using the Documentation 1-16
Neural Network Applications 1-17
Applications in this Toolbox 1-17
Business Applications 1-17

Neuron Model and Network Architectures

2

Neuron Model i 2-2
Simple Neuroniiitiii i, 2-2
Transfer Functions 2-3
Neuron with Vector Input 2-5

Network Architectures 2-8
ALayerof Neurons i, 2-8
Multiple Layers of Neurons 2-10
Input and Output Processing Functions 2-12

Data Structures 2-14
Simulation with Concurrent Inputs in a Static Network 2-14
Simulation with Sequential Inputs in a Dynamic Network .. 2-15

Simulation with Concurrent Inputs in a Dynamic Network . 2-17

Training Styles 2-20
Incremental Training (of Adaptive and Other Networks) 2-20

3|

Batch Training i, 2-22
Training Tip e 2-25
Perceptrons

Introduction 3-2
Important Perceptron Functions 3-2
Neuron Model 3-3
Perceptron Architecture 3-5
Creating a Perceptron (newp) 3-6
Simulation (SIm) i e 3-8
Initialization (init) 3-10
LearningRules 3-13
Perceptron Learning Rule (learnp) 3-14
Training (train) 3-17
Limitations and Cautions 3-22
Outliers and the Normalized Perceptron Rule 3-22
Graphical User Interface 3-24
Introductiontothe GUI 3-24
Create a Perceptron Network (nntool) 3-24
Train the Perceptron 3-28
Export Perceptron Results to Workspace 3-30
Clear Network/Data Window 3-31
Importing from the Command Line 3-31
Save a Variable to a File and Load It Later 3-32

ii

iii

Linear Filters

4|

Introduction 4-2
Neuron Model i 4-3
Network Architecture 4-4
Creating a Linear Neuron (newlin) 4-4
Least Mean Square Error 4-8
Linear System Design (newlind) 4-9
Linear Networks with Delays 4-10
Tapped Delay Line 4-10
Linear Filter 4-10
LMS Algorithm (learnwh) 4-13
Linear Classification (train) 4-15
Limitations and Cautions 4-18
Overdetermined Systemscotiin.... 4-18
Underdetermined Systems 4-18
Linearly Dependent Vectors 4-18
Too Large a Learning Rate 4-19
Backpropagation

Introduction 5-2
SolvingaProblem 5-4
Improving Results 5-6
Underthe Hood 5-7

Contents

Architecture e 5-8

Feedforward Network 5-10
Simulation (sim) 5-14
Training e 5-15

Backpropagation Algorithm 5-15
Faster Training i, 5-19

Variable Learning Rate (traingda, traingdx) 5-19

Resilient Backpropagation (trainrp) 5-21

Conjugate Gradient Algorithms 5-22

Line Search Routines 5-26

Quasi-Newton Algorithms 5-29

Levenberg-Marquardt (trainlm) 5-30

Reduced Memory Levenberg-Marquardt (trainlm) 5-32
Speed and Memory Comparison 5-34

SUMMATY ...ttt e 5-50
Improving Generalization 5-52

Early Stopping i e 5-53

Index Data Division (divideind) 5-54

Random Data Division (dividerand) 5-54

Block Data Division (divideblock) 5-54

Interleaved Data Division (dividerand) 5-55

Regularization 5-55

Summary and Discussion of Early Stopping

and Regularization 5-59
Preprocessing and Postprocessing 5-62

Min and Max (mapminmax)ceuuvueenmnn... 5-63

Mean and Stand. Dev. (mapstd) 5-64

Principal Component Analysis (processpeca) 5-65

Processing Unknown Inputs (fixunknowns) 5-66

Representing Unknown or Don’t Care Targets 5-67

Posttraining Analysis (postreg) 5-67
Sample Training Session 5-69

iv

Limitationsand Cautions 5-74

6

Introduction 6-2
Examples of Dynamic Networks 6-2
Applications of Dynamic Networks 6-7
Dynamic Network Structures 6-8
Dynamic Network Training 6-9

Focused Time-Delay Neural Network (newfftd) 6-11

Distributed Time-Delay Neural Network (newdtdnn) 6-15

NARX Network (newnarx, newnarxsp, sp2narx) 6-18

Layer-Recurrent Network (newlrn) 6-24

7|

Contents

Introduction e 7-2
NN Predictive Control 7-4
System Identification 7-4
Predictive Control 7-5
Using the NN Predictive Controller Block 7-6
NARMA-L2 (Feedback Linearization) Control 7-14
Identification of the NARMA-L2 Model 7-14
NARMA-L2 Controller 7-16
Using the NARMA-L2 Controller Block 7-18

Model Reference Control 7-23

Using the Model Reference Controller Block 7-25
Importing and Exporting 7-31
Importing and Exporting Networks 7-31
Importing and Exporting Training Data 7-35

Radial Basis Networks

8|

Introduction 8-2
Important Radial Basis Functions 8-2
Radial Basis Functions 8-3
Neuron Model i, 8-3
Network Architecture 8-4
Exact Design (newrbe), 8-5
More Efficient Design (newrb) 8-7
Demonstrations 8-8
Probabilistic Neural Networks 8-9
Network Architecture 8-9
Design (mewpnn)u .. 8-10
Generalized Regression Networks 8-12
Network Architecture 8-12
Design (newgrnn) 8-14

Self-Organizing and Learning
9 Vector Quantization Nets

Introduction 9-2
Important Self-Organizing and LVQ Functions 9-2

vii

Contents

Competitive Learning 9-3

Architecture 9-3
Creating a Competitive Neural Network (newe) 9-4
Kohonen Learning Rule (learnk) 9-5
Bias Learning Rule (learncon) 9-5
Training i e 9-6
Graphical Example 9-8
Self-Organizing Feature Maps 9-9
Topologies (gridtop, hextop, randtop) 9-10
Distance Functions (dist, linkdist, mandist, boxdist) 9-14
Architecture 9-17
Creating a Self-Organizing MAP Neural Network (newsom) . 9-18
Training (learnsom)iiiiiiiennnnennn.. 9-19
Examples 9-23
Learning Vector Quantization Networks 9-30
Architecture 9-30
Creating an LVQ Network (newlvq) 9-31
LVQ1 Learning Rule (learnlvl) 9-34
Trainingoiiii i e 9-35
Supplemental LVQ2.1 Learning Rule (learnlv2) 9-37

Adaptive Filters and Adaptive Training

10

Introduction 10-2

Important Adaptive Functions 10-2
Linear Neuron Model 10-3
Adaptive Linear Network Architecture 10-4

Single ADALINE (mewlin) 10-4
Least Mean Square Error 10-7
LMS Algorithm (learnwh) 10-8

Adaptive Filtering (adapt) 10-9

11

Tapped Delay Line i, 10-9
Adaptive Filter 10-9
Adaptive Filter Example 10-10
Prediction Example 10-13
Noise Cancellation Example 10-14
Multiple Neuron Adaptive Filters 10-16
Applications

Introduction 11-2
Application Scripts 11-2
Applinl: Linear Design 11-3
Problem Definition 11-3
Network Design 114
Network Testing 114
Thoughts and Conclusions 11-6
Applin2: Adaptive Prediction 11-7
Problem Definition 11-7
Network Initialization 11-8
Network Training 11-8
Network Testingttt 11-8
Thoughts and Conclusions 11-10
Appelml: Amplitude Detection 11-11
Problem Definition 11-11
Network Initialization 11-11
Network Training i, 11-12
Network Testing i, 11-12
Network Generalization 11-13
Improving Performance 11-14
Appcrl: Character Recognition 11-15
Problem Statement 11-15

viii

ix

Neural Network 11-16

System Performance 11-19
Summary 11-21
Advanced Topics

Custom Networks 12-2
Custom Network i, 12-2
Network Definition 12-3
Network Behavior 12-12
Additional Toolbox Functions 12-16
CustomFunctions 12-17

Historical Networks

13|

Introduction 13-2
Important Recurrent Network Functions 13-2
ElmanNetworks 13-3
Architecture 13-3
Creating an Elman Network (newelm) 134
Training an Elman Network 13-5
Hopfield Network 13-8
Fundamentals 13-8
Architecture 13-8
Design (newhop) i 13-10

Contents

Network Object Reference

14

Network Properties 14-2
Architecture 14-2
Subobject Structures 14-5
Functions i 14-7
Parameters 14-10
Weight and Bias Values 14-11
Other e 14-12

Subobject Properties 14-13
Inputs 14-13
Layers e e 14-15
Outputs 14-20
Biases ... 14-22
Input Weights 14-23

Layer Weights 14-25

xi

Contents

Functions — By Category

15

Analysis Functions 15-3
Distance Functions 15-4
Graphical Interface Functions 15-5
Layer Initialization Functions 15-6
Learning Functions 15-7
Line Search Functions 15-8
Net Input Functions 15-9
Network Initialization Function 15-10
Network Use Functions 15-11
New Networks Functions 15-12
Performance Functions 15-13
Plotting Functions 15-14
Processing Functions 15-15
Simulink Support Funection 15-16
Topology Functions 15-17
Training Functions 15-18
Transfer Functions 15-19
Utility Functions 15-20

Vector Functions 15-21

Weight and Bias Initialization Functions 15-22
Weight Functions 15-23
Transfer Function Graphs 15-24

Functions — Alphabetical List

16 |

Mathematical Notation

Al

Mathematical Notation for Equations and Figures A-2
BasicConceptsco i A-2
Language i e A-2
Weight Matrices A-2
Bias Elements and Vectors A-2
Time and Iteration i, A-2
Layer Notation A-3
Figure and Equation Examples A-3

Mathematics and Code Equivalents A4

Demonstrations and Applications

B

Tables of Demonstrations and Applications B-2
Chapter 2, “Neuron Model and Network Architectures” B-2
Chapter 3, “Perceptrons” B-2
Chapter 4, “Linear Filters” B-3

xii

xiil Contents

Chapter 5, “Backpropagation” B-3

C

D

Chapter 8, “Radial Basis Networks” B-4
Chapter 9, “Self-Organizing and Learning
Vector Quantization Nets” B-4
Chapter 10, “Adaptive Filters and Adaptive Training” B-4
Chapter 11, “Applications”o .. B-5
Chapter 13, “Historical Networks” B-5
Simulink
Blockset C-2
Transfer Function Blocks C-2
NetInput Blocks C-3
Weight Blocks C-3
Processing Blocks i C-4
Block Generation, C-5
Example C-5
EXerCiSes . ..ttt e e C-7
Code Notes
Dimensions i D-2
Variables e D-3
Utility Function Variables D-4
Functions i D-6
Code Efficiency D-7
Argument Checking D-8

Bibliography

E

Glossary

Index

xiv

XV Contents

Getting Started

What Are Neural Networks? (p. 1-2)
Fitting a Function (p. 1-3)
Using the Documentation (p. 1-16)

Neural Network Applications (p. 1-17)

Defines and introduces neural networks
Shows how to train a neural network to fit a function

Identifies prerequisites for using Neural Network Toolbox
documentation

Provides an overview of neural network applications and
points you to the sections that describe them

1 Geri ng Started

What Are Neural Networks?

1-2

Neural networks are composed of simple elements operating in parallel. These
elements are inspired by biological nervous systems. As in nature, the network
function is determined largely by the connections between elements. You can
train a neural network to perform a particular function by adjusting the values
of the connections (weights) between elements.

Commonly neural networks are adjusted, or trained, so that a particular input
leads to a specific target output. Such a situation is shown below. There, the
network is adjusted, based on a comparison of the output and the target, until
the network output matches the target. Typically many such input/target pairs
are needed to train a network.

Neural Network
. including connections
(called weights)
Input between neurons Output

Compare

Adjust
weights

Neural networks have been trained to perform complex functions in various
fields, including pattern recognition, identification, classification, speech,
vision, and control systems.

Today neural networks can be trained to solve problems that are difficult for
conventional computers or human beings. Throughout the toolbox emphasis is
placed on neural network paradigms that build up to or are themselves used in
engineering, financial, and other practical applications.

Fitting a Function

Fitting a Function

Neural networks are good at fitting functions and recognizing patterns. In fact,
there is a proof that a fairly simple neural network can fit any practical
function.

Suppose, for instance that you have data from a housing application [HaRu78].
You want to design a network that can predict the value of a house (in $1000’s)
given 13 pieces of geographical and real estate information. You have a total of
506 example homes for which you have those 13 items of data and their
associated market values.

Three ways to solve this problem are available. A command-line solution is
shown below. A graphical user interface, nftool, is used in the second solution.
Finally, nntool is a third possibility (see “Graphical User Interface” on

page 3-24).

Using Command-Line Functions
First load the data, consisting of input vectors p and target vectors t, as follows:

load housing

Now create a network. For this example, you will use a feed-forward network
with the default tan-sigmoid transfer function in the hidden layer and linear
transfer function in the output layer. This is a useful structure for function
approximation (or regression) problems. Use 20 neurons (somewhat arbitrary)
in one hidden layer. More neurons require more computation, but allow the
network to solve more complicated problems. More layers require more
computation, but might result in the network solving complex problems more
efficiently. The network has one output neuron, because there is only one
target value associated with each input vector.

net = newff(p,t,20);

Now train the network. The network uses the default Levenberg-Marquardt
algorithm for training. Input vectors p and target vectors t will be randomly
divided into three sets so that 60% are used for training, 20% are used to
validate that the network is generalizing and to stop training before
overfitting. The last 20% are used as a completely independent test of network
generalization.

net=train(net,p,t);

1-3

1 Cetting Started

14

TRAINLM-calcjx, Epoch 0/100, MSE 1798.9/0, Gradient 6636.81/1e-10
TRAINLM-calcjx, Epoch 10/100, MSE 2.3370/0, Gradient 2.4295/1e-10
TRAINLM, Validation stop.

Note that the function train was used here. It presents all the input vectors to
the network at once in a “batch.” Alternatively, you can present the input
vectors one at a time using the function adapt. The two training approaches are
discussed in “Training Styles” on page 2-20.

Fitting a Function

This training stopped when the validation error increased, which occurred
after 10 iterations. Training produces a plot of the training errors, validation
errors, and test errors, as shown in the following figure. In this example, the
result is reasonable because the final mean square error is small, the test set
error and the validation set error have similar characteristics, and no
significant overfitting has occurred.

) Training with TRAINLM

4 Performance is 2.33704, Goal is 0

Performance

10" '

Train

Validation |1

Test

0 2

Stop Training

10 Epochs

10

Next, perform some analysis of the network response. Put the entire data set
through the network (training, validation, and test sets) and perform a linear
regression between the network outputs and the corresponding targets.

y = sim(net,p);
[m,b,r] = postreg(y,t);

1-5

1 Geri ng Started

1-6

The results are shown in the following figure.

) Figure 1
Outputs vs. Targets, R=0 94693
60 T T T T
s} Data Points
Best Linear Fit

50
~
o
=
= 40
[o)]
@
o
W
= 30
E
©
2 20
£
e
£ 10t
(a8
=)
& o

o o B
-10 1 L L L
0 10 20 30 40 50
Targets T

The output tracks the targets very well, and the R-value is over 0.9. If even
more accurate results were required, you could

® Reset the initial network weights and biases to new values with init and
train again

® Increase the number of hidden neurons

¢ Increase the number of training vectors

¢ Increase the number of input values, if more relevant information is
available

® Try a different training algorithm (see “Speed and Memory Comparison” on
page 5-34)

In this case, the network response is satisfactory and you can now use sim to
put the network to use on new inputs.

Fitting a Function

Using the Neural Network Fitting Tool GUI

First load the data as follows:

load housing

Open the Neural Network Fitting Tool window with this command:

nftool

You will see the following.

Neural Network Fitting Tool

P To continue, click [Next].

% Welcome to the Neural Metwork Fitting Tool

Use a feed-forward neural network to fit an input-output data problem.

Introduction

With the Meural Metwork Fitting Tool you can select data,
create a network, train it, and evaluate its performance by
using mean sguare errar and regression analysis. If the
first network does not perdform well enough, you are led
through an iterative process of improvement.

This toal is suitable far static fitting problems using a
standard two-layer feed-forward neural netwark trained with
Levenberg-Marquardt. (Training is automatically done with
scaled conjugate gradient instead, if the data set is very
large.) Use NMTOOL for more advanced problems and
network solutions.

- W Mext] [@ cancel l

Click Next to proceed.

1 Getting Started

Select p and t from the menus shown below.

Neural Network Fitting Tool

<L Select Data
-
YWhat inputs and associated targets define your problem?

Get Matrices from Workspace

Summary
_ | v“] Inputs are 13x506 representing 506 samples of 13
b Input Data: P elemernts.
@ Targst Data: | ! v“] Targets are %506 representing 506 sarnples of 1 element.
Samples are oriented as: O Rows @ Calumns

P To continue, click [Next].

@@ Back ”) Mext] ’ @ cancel]

Click Next again.

Fitting a Function

Note that validation and test data sets are each set to 20% of the original data.

Neural Network Fitting Tool

Validation and Test Data
Set aside some samples for validation and testing.

Select Percentages Explanation

& Randomly divide up the 806 samples: & Three Kinds of Samples:

W Training: 60% 304 samples |\ Training:

@ Validation: 101 samples These are presented to the netwark during training, and the

netwark is adjusted according to its error.

W Testing: 101 samples

a “alidation:

These are used to measure network generalization, and to
halt training when generalization stops improving.

W Testing:
These have no effect on training and so provide an

independent measure of network performance during and
after training.

PP Change the percentages if desired, then click [Next] to continue.

@@ Back ” B et] [@ cancel l

Click Next.

1 Getting Started

Note that the number of hidden neurons is set to 20. You can change this in
another run if you want. You might want to do this if the network does not
perform as well as you like.

Neural Network Fitting Tool

! MNetwork Size
Set the number of neurans in the feed-forward network's hidden layer.

Hidden Layer Recommendation

Mumber of Hidden Meurans: Return to this panel and increase the nurmber of
neurons if the network does not perform well after
training.

Restore Defaults
Architecture
Input Hidden Layer Output Layer Output

13 20 1 1

P Change the number of neurons if desired, then click [Next] to continue.

’ @ Back ” B Mext] [@ cancel l

Click Next.

1-10

Fitting a Function

Now click Train.

Neural Network Fitting Tool

Train Network
Train the network to fit the input and target data.

Train Network

Train using Levenberg-Marguardt optimization.

Training automatically stops when generalization stops
improving, as indicated by an increase in the mean sgquare
error of the validation samples.

Notes

) Training multiple tirmes will generate different results
due to different initial conditions and sampling.

Mean Squared Error is the average squared
difference between outputs and targets. Lower values
are hetter. Zero means no errar.

I View regression, train again, or click [Next] to continue.

Results

& Samples MSE R
W Training: 304 5964390 0.983821
W ‘alidation: 10 14758397e-0 0927595
W Testing: 10 13.15944e-0 0.890040

M view Regrassion

Regression R Values measure the correlation
between outputs and targets. An B value of 1 means
a close relationship, O a random relationship.

@@ Back ” B et] ’ @ cancel]

1-11

1 Geri ng Started

) Training with TRAINLM

4 Performance is 2.33704, Goalis 0
10 T T T T
Train 1
Validation |]
Test
3
C
L]
£
(o]
=
[11]
o
10° ' . . .
0 2 4 6 8 10
10 Epochs

This time the training required 10 iterations.

Now click View Regression in the Neural Network Fitting Tool.

1-12

Fitting a Function

These regression figures are similar to those of the command-line solution.

) Figure 1: Regression Analysis of Outputs and Targets

o Training Outputs vs. Targets, R=096862 = Validation Outputs vs. Targets, R=0 9276 0 Test Outputs vs: Targets, R=0 82004
= Training Data Points = o Validation Data Points ; Test Data Paints
5 o0 Best Linear Fit & = ~ Best Linear Fil g o Best Linear Fit
& 1 | [— :I,-; 45 é
g =40 S %
235 235 2
£ 5 g a g
& g & i
22 2 £ :
=’ = | #
2 > 20 =l Moo
g 15 15 4 o
8 B

10 s 10

5 2% L n 5 10

10 20 30 40 50 50 10 20 a0 40 50
Targets T Targets T

Here are the regression plots for the output with respect to training, validation,
and test data.

Now click Next in the Neural Network Fitting Tool to evaluate the network.

1-13

1 Geri ng Started

1-14

) Neural Network Fitting Tool

? Evaluate Metwork

Reiterate for hetter performance

Try training again if you reguire marginal impravernent.

% Train Again

Increase network size if more improvernent is needed.

’ El Increase Metwork Size

Mot working? ¥ou may need to use a larger data set.

’ & Import Larger Data Set

Optionally test network on more data, then decide if network performance is good enough.

Optionally perform additional tests

o Input Data: none

]
9]
(@) Colurnns () Rows

)
@ Target Data: none)

K
K

Samples are oriented as:

a

Mo input or target data selected.

P Select inputs and targets, click an improvement button, or click [Next].

’ @@ Back ” B Mext] [@ cancel l

At this point you could test the network against new data.

If you are dissatisfied with the network’s performance on the original or new
data you could train it again, increase the number of neurons, or perhaps get a

larger training data set.

Assuming you are satisfied, click Next.

Fitting a Function

Use the buttons on this screen to save your results.

Neural Network Fitting Tool

Save Results
-
Save network and data to workspace.

Save Data to Workspace

- -4 Save network to MATLAB network ohject named: net

[ix] Save performance and data set information to MATLAB struct named: info
Save output to MATLAB matrix named: output
Save error to MATLAB matrix named: errar

[Save input to MATLAB matrix named:

6 = K& &

[] Save target to MATLAB matrix named:

|

[] Save ALL selected values above to MATLAB struct named:

% Save Results

Generate an M-function to reproduce results or solve other problems: [Generate M-File

[l

P To continue, click [Next].

(Fow) +0e (G

You now have the network saved as net1 in the workspace. You can perform
additional tests on it, or put it to work on new inputs, using the function sim.

If you are finished click the Finish button.

1-15

1 Geri ng Started

Using the Documentation

You can proceed to a later chapter, read it, and use its functions without
difficulty if you first read Chapter 2, “Neuron Model and Network
Architectures,” and Chapter 3, “Perceptrons.”

Chapter 2, “Neuron Model and Network Architectures,” presents the
fundamentals of the neuron model, the architectures of neural networks. It
also discusses notation used in the toolbox.

Chapter 3, “Perceptrons,” tells how to create and train simple networks. It also
introduces a graphical user interface (GUI) that you can use to solve problems
without a lot of coding.

The neuron model and the architecture of a neural network describe how a
network transforms its input into an output. This transformation can be
viewed as a computation. These first two chapters tell about the computations
that are done and pave the way for an understanding of training methods for
the networks.

1-16

Neural Network Applications

Neural Network Applications

Applications in this Toolbox

Chapter 7, “Control Systems,” describes three practical neural network control
system applications, including neural network model predictive control, model
reference adaptive control, and a feedback linearization controller.

Other neural network applications are described in Chapter 11, “Applications.”

Business Applications

The 1988 DARPA Neural Network Study [DARP88] lists various neural
network applications, beginning in about 1984 with the adaptive channel
equalizer. This device, which is an outstanding commercial success, is a single-
neuron network used in long-distance telephone systems to stabilize voice
signals. The DARPA report goes on to list other commercial applications,
including a small word recognizer, a process monitor, a sonar classifier, and a
risk analysis system.

Neural networks have been applied in many other fields since the DARPA
report was written.

Aerospace

® High-performance aircraft autopilot, flight path simulation, aircraft control
systems, autopilot enhancements, aircraft component simulation, aircraft
component fault detection

Automotive
® Automobile automatic guidance system, warranty activity analysis

Banking

® Check and other document reading, credit application evaluation

Credit Card Activity Checking

® Spot unusual credit card activity that might possibly be associated with loss
of a credit card

1-17

1 Geri ng Started

1-18

Defense

e Weapon steering, target tracking, object discrimination, facial recognition,
new kinds of sensors, sonar, radar and image signal processing including
data compression, feature extraction and noise suppression, signal/image
identification

Electronics

® Code sequence prediction, integrated circuit chip layout, process control,
chip failure analysis, machine vision, voice synthesis, nonlinear modeling

Entertainment

* Animation, special effects, market forecasting

Financial

® Real estate appraisal, loan advising, mortgage screening, corporate bond
rating, credit-line use analysis, portfolio trading program, corporate
financial analysis, currency price prediction

Industrial

® Neural networks are being trained to predict the output gases of furnaces
and other industrial processes. They then replace complex and costly
equipment used for this purpose in the past.

Insurance

¢ Policy application evaluation, product optimization

Manvufacturing

e Manufacturing process control, product design and analysis, process and
machine diagnosis, real-time particle identification, visual quality
inspection systems, beer testing, welding quality analysis, paper quality
prediction, computer-chip quality analysis, analysis of grinding operations,
chemical product design analysis, machine maintenance analysis, project
bidding, planning and management, dynamic modeling of chemical process
system

Neural Network Applications

Medical

® Breast cancer cell analysis, EEG and ECG analysis, prosthesis design,
optimization of transplant times, hospital expense reduction, hospital
quality improvement, emergency-room test advisement

Oil and Gas

¢ Exploration

Robotics

® Trajectory control, forklift robot, manipulator controllers, vision systems

Speech

® Speech recognition, speech compression, vowel classification, text-to-speech
synthesis

Securities

® Market analysis, automatic bond rating, stock trading advisory systems

Telecommunications

® Image and data compression, automated information services, real-time
translation of spoken language, customer payment processing systems

Transportation

® Truck brake diagnosis systems, vehicle scheduling, routing systems

1-19

1 Getting Started

1-20

Neuron Model and
Network Architectures

Neuron Model (p. 2-2)

Network Architectures (p. 2-8)
Data Structures (p. 2-14)

Training Styles (p. 2-20)

A description of the neuron model, including simple neurons,
transfer functions, and vector inputs

A discussion of single and multiple layers of neurons

A discussion of how the format of input data structures affects the
simulation of both static and dynamic networks

A description of incremental and batch training

2 Neuron Model and Network Architectures

2-2

Neuron Model

Simple Neuron

A neuron with a single scalar input and no bias appears on the left below.

Input Neuron without bias Input Neuron with bias
N N N N
Po W nyyla, Polp/>Lpl f1-op
lb
—/ \ J 1 J
a= f(wp) a= f(wp+b)

The scalar input p is transmitted through a connection that multiplies its
strength by the scalar weight w to form the product wp, again a scalar. Here
the weighted input wp is the only argument of the transfer function f, which
produces the scalar output a. The neuron on the right has a scalar bias, 6. You
can view the bias as simply being added to the product wp as shown by the
summing junction or as shifting the function f to the left by an amount b. The
bias is much like a weight, except that it has a constant input of 1.

The transfer function net input n, again a scalar, is the sum of the weighted
input wp and the bias b. This sum is the argument of the transfer function f.
(Chapter 8, “Radial Basis Networks,” discusses a different way to form the net
input n.) Here fis a transfer function, typically a step function or a sigmoid
function, that takes the argument n and produces the output a. Examples of
various transfer functions are in “Transfer Functions” on page 2-3. Note that
w and b are both adjustable scalar parameters of the neuron. The central idea
of neural networks is that such parameters can be adjusted so that the network
exhibits some desired or interesting behavior. Thus, you can train the network
to do a particular job by adjusting the weight or bias parameters, or perhaps
the network itself will adjust these parameters to achieve some desired end.

All the neurons in this toolbox have provision for a bias, and a bias is used in
many of the examples and is assumed in most of this toolbox. However, you can
omit a bias in a neuron if you want.

Neuron Model

As previously noted, the bias b is an adjustable (scalar) parameter of the
neuron. It is not an input. However, the constant I that drives the bias is an
input and must be treated as such when you consider the linear dependence of
input vectors in Chapter 4, “Linear Filters.”

Transfer Functions

Many transfer functions are included in this toolbox. A complete list of them
can be found in the reference pages. Three of the most commonly used
functions are shown below.

a = hardlim(n)
Hard-Limit Transfer Function
The hard-limit transfer function shown above limits the output of the neuron
to either 0, if the net input argument »n is less than 0, or 1, if n is greater than

or equal to 0. This function is used in Chapter 3, “Perceptrons,” to create
neurons that make classification decisions.

The toolbox has a function, hardlim, to realize the mathematical hard-limit
transfer function shown above. Try the following code:

n = -5:0.1:5;
plot(n,hardlim(n), 'c+:"');

It produces a plot of the function hardlim over the range -5 to +5.

All the mathematical transfer functions in the toolbox can be realized with a
function having the same name.

The linear transfer function is shown below.

2-3

2 Neuron Model and Network Architectures

........... T/ -

a = purelin(n)

Linear Transfer Function

Neurons of this type are used as linear approximators in Chapter 4, “Linear
Filters.”

The sigmoid transfer function shown below takes the input, which can have
any value between plus and minus infinity, and squashes the output into the
range 0 to 1.

S

a = logsig(n)
Log-Sigmoid Transfer Function

This transfer function is commonly used in backpropagation networks, in part
because it is differentiable.

The symbol in the square to the right of each transfer function graph shown
above represents the associated transfer function. These icons replace the
general fin the boxes of network diagrams to show the particular transfer
function being used.

For a complete listing of transfer functions and their icons, see the reference
pages. You can also specify your own transfer functions.

You can experiment with a simple neuron and various transfer functions by
running the demonstration program nnd2n1.

2-4

Neuron Model

Neuron with Vector Input

A neuron with a single R-element input vector is shown below. Here the
individual element inputs

p 1> P 9 3eee pR
are multiplied by weights

Wi, Wy 2 Wi R

and the weighted values are fed to the summing junction. Their sum is simply
Wp, the dot product of the (single row) matrix W and the vector p.

Input Neuron w Vector Input

N
Where
n a R = number of
> p f > elements in
input vector
lb
1 J
a=f(Wp +b)

The neuron has a bias b, which is summed with the weighted inputs to form
the net input n. This sum, n, is the argument of the transfer function f.

n o= Wy Pyt Wy eyt t Wy gPR D
This expression can, of course, be written in MATLAB® code as
n=Wwp+b

However, you will seldom be writing code at this level, for such code is already
built into functions to define and simulate entire networks.

Abbreviated Notation

The figure of a single neuron shown above contains a lot of detail. When you
consider networks with many neurons, and perhaps layers of many neurons,
there is so much detail that the main thoughts tend to be lost. Thus, the

2-5

2 Neuron Model and Network Architectures

2-6

authors have devised an abbreviated notation for an individual neuron. This
notation, which is used later in circuits of multiple neurons, is shown.

Input Neuron
N\ N
D a Where...
LW ™4 n 1> R=number of
IxR f elements in
Ix1 input vector
19 b L
R 1x1 1
NS N V)
a=f(Wp +b)

Here the input vector p is represented by the solid dark vertical bar at the left.
The dimensions of p are shown below the symbol p in the figure as Rx1. (Note
that a capital letter, such as R in the previous sentence, is used when referring
to the size of a vector.) Thus, p is a vector of R input elements. These inputs
postmultiply the single-row, R-column matrix W. As before, a constant 1 enters
the neuron as an input and is multiplied by a scalar bias b. The net input to the
transfer function fis n, the sum of the bias b and the product Wp. This sum is
passed to the transfer function fto get the neuron’s output a, which in this case
is a scalar. Note that if there were more than one neuron, the network output
would be a vector.

A layer of a network is defined in the previous figure. A layer includes the
combination of the weights, the multiplication and summing operation (here
realized as a vector product Wp), the bias b, and the transfer function f. The
array of inputs, vector p, is not included in or called a layer.

Each time this abbreviated network notation is used, the sizes of the matrices
are shown just below their matrix variable names. This notation will allow you
to understand the architectures and follow the matrix mathematics associated
with them.

As discussed in “Transfer Functions” on page 2-3, when a specific transfer
function is to be used in a figure, the symbol for that transfer function replaces
the f shown above. Here are some examples.

Neuron Model

I

hardlim

74

purelin

ya

logsig

You can experiment with a two-element neuron by running the demonstration
program nnd2n2.

2-7

2 Neuron Model and Network Architectures

2-8

Network Architectures

Two or more of the neurons shown earlier can be combined in a layer, and a
particular network could contain one or more such layers. First consider a
single layer of neurons.

A Layer of Neurons
A one-layer network with R input elements and S neurons follows.

Inputs Layer of Neurons

A\
nl al
2 < >
l b, Where
1
n, a, R = number of
> p f > elements in
l b input vector
1 " 4 S = number of
D s » 1 s > neurons in layer
I
1
'/ \ J
a=f(Wp+b)

In this network, each element of the input vector p is connected to each neuron
input through the weight matrix W. The ith neuron has a summer that gathers
its weighted inputs and bias to form its own scalar output n(z). The various n(i)
taken together form an S-element net input vector n. Finally, the neuron layer
outputs form a column vector a. The expression for a is shown at the bottom of
the figure.

Note that it is common for the number of inputs to a layer to be different from
the number of neurons (i.e., R is not necessarily equal to S). A layer is not
constrained to have the number of its inputs equal to the number of its
neurons.

Network Architectures

You can create a single (composite) layer of neurons having different transfer
functions simply by putting two of the networks shown earlier in parallel. Both
networks would have the same inputs, and each network would create some of
the outputs.

The input vector elements enter the network through the weight matrix W.

wl,l wl,z e wl’R
w = |W2,1Wo 2 - WapR

wS,l wS,z wS’R

Note that the row indices on the elements of matrix W indicate the destination
neuron of the weight, and the column indices indicate which source is the input
for that weight. Thus, the indices in wy 9 say that the strength of the signal
from the second input element o the first (and only) neuron is wy 5.

The S neuron R input one-layer network also can be drawn in abbreviated
notation.

Input Layer of Neurons
f \ N Where...
p a
W) R = number of
Rx1 ™ n Sx1 elements in
SxR f input vector
j Sx1
1» b S= number of
R Sx1 S neurons in layer 1
U\ J Y
a=f (Wp+h)

Here p is an R length input vector, W is an SxR matrix, and a and b are S
length vectors. As defined previously, the neuron layer includes the weight
matrix, the multiplication operations, the bias vector b, the summer, and the
transfer function boxes.

2-9

2 Neuron Model and Network Architectures

2-10

Inputs and Layers

To describe networks having multiple layers, the notation must be extended.
Specifically, it needs to make a distinction between weight matrices that are
connected to inputs and weight matrices that are connected between layers. It
also needs to identify the source and destination for the weight matrices.

We will call weight matrices connected to inputs input weights; we will call
weight matrices coming from layer outputs layer weights. Further,
superscripts are used to identify the source (second index) and the destination
(first index) for the various weights and other elements of the network. To
illustrate, the one-layer multiple input network shown earlier is redrawn in
abbreviated form below.

Input Layer 1
/ \ N\ Where...
P a R = number of
Rx1 IWM\ nt ETd elements in
SxR (H fi1 input vector
j Stx1
19 b S= number of
R stx1 [neurons in Layer 1
__/ \ J

ar = f1(IWiip+by)

As you can see, the weight matrix connected to the input vector p is labeled as
an input weight matrix (IW'!) having a source 1 (second index) and a

destination 1 (first index). Elements of layer 1, such as its bias, net input, and
output have a superscript 1 to say that they are associated with the first layer.

“Multiple Layers of Neurons” uses layer weight (LW) matrices as well as input
weight (IW) matrices.

Multiple Layers of Neurons

A network can have several layers. Each layer has a weight matrix W, a bias
vector b, and an output vector a. To distinguish between the weight matrices,
output vectors, etc., for each of these layers in the figures, the number of the

layer is appended as a superscript to the variable of interest. You can see the
use of this layer notation in the three-layer network shown below, and in the
equations at the bottom of the figure.

Network Architectures

Inputs Layer 1 Layer 2 Layer 3
N7 A 4 A 4 A\
.1l n‘l all ZWZ’IH I’lzl - azl lwz,zll ’731 - 031
: A2 —P / A2 —P >
JE# o
1 2 2 1 3
n, L n, I
X/ DN e < A >
J I . J
1 : 1
}’lzs 2 ag I’l35 S azsx
—\= —=
lW 2.5 l bZS ZW $.5 l b}g}
1 1
AN J AN J
a'= fl(IWHp'i‘bl) al= fZ(sz.lal+b2) a’= f3(LW3.zaz+b3)

a’ = (LW T LW AW 'p+b")+b)+b")

The network shown above has R! inputs, S! neurons in the first layer, S2
neurons in the second layer, etc. It is common for different layers to have
different numbers of neurons. A constant input 1 is fed to the bias for each
neuron.

Note that the outputs of each intermediate layer are the inputs to the following
layer. Thus layer 2 can be analyzed as a one-layer network with S* inputs, S?
neurons, and an S%xS? weight matrix W2, The input to layer 2 is a'; the output
is a%. Now that all the vectors and matrices of layer 2 have been identified, it

can be treated as a single-layer network on its own. This approach can be taken
with any layer of the network.

The layers of a multilayer network play different roles. A layer that produces
the network output is called an output layer. All other layers are called hidden
layers. The three-layer network shown earlier has one output layer (layer 3)
and two hidden layers (layer 1 and layer 2). Some authors refer to the inputs
as a fourth layer. This toolbox does not use that designation.

2-11

2 Neuron Model and Network Architectures

2-12

Input

The same three-layer network can also be drawn using abbreviated notation.

Layer 1 Layer 2 Layer 3

al a as=

Rx1

W11 LW L W32

Six1 S2x1 S3x1

b1

ni n2 n3
SIxR @_} f1 s2x St @_’ f2 Six 52 @_> £3
j Six1 j S2x1 j S3x1

1| b2 1| bs

1
R
\—/ \

Six1 S8 S2x1 [S3x1 S8

AN J \ J

ar = f1(1W11p+by) a2 = f2(LWa1 a1 +D2) as =3 (LWs2ae+hs)

a3 =f3 (LW32 2 (LW21f1(1W11p +b1)+ b2)+bs = y

Multiple-layer networks are quite powerful. For instance, a network of two
layers, where the first layer is sigmoid and the second layer is linear, can be
trained to approximate any function (with a finite number of discontinuities)
arbitrarily well. This kind of two-layer network is used extensively in Chapter
5, “Backpropagation.”

Here it is assumed that the output of the third layer, a®, is the network output
of interest, and this output is labeled as y. This notation is used to specify the
output of multilayer networks.

Input and Output Processing Functions

Network inputs might have associated processing functions. Processing
functions transform user input data to a form that is easier or more efficient for
a network.

For instance, mapminmax transforms input data so that all values fall into the
interval [-1, 1]. This can speed up learning for many networks.
removeconstantrows removes the values for input elements that always have
the same value because these input elements are not providing any useful
information to the network. The third common processing function is
fixunknowns, which recodes unknown data (represented in the user’s data
with NaN values) into a numerical form for the network. fixunknowns preserves
information about which values are known and which are unknown.

Network Architectures

Similarly, network outputs can also have associated processing functions.
Output processing functions are used to transform user-provided target vectors
for network use. Then, network outputs are reverse-processed using the same
functions to produce output data with the same characteristics as the original
user-rovided targets.

Both mapminmax and removeconstantrows are often associated with network
outputs. However, fixunknowns is not. Unknown values in targets
(represented by NaN values) do not need to altered for network use.

Processing functions are described in more detail in “Preprocessing and
Postprocessing” in Chapter 5.

2-13

2 Neuron Model and Network Architectures

2-14

Data Structures

This section discusses how the format of input data structures affects the
simulation of networks. It starts with static networks, and then continues with
dynamic networks.

There are two basic types of input vectors: those that occur concurrently (at the
same time, or in no particular time sequence), and those that occur sequentially
in time. For concurrent vectors, the order is not important, and if there were a
number of networks running in parallel, you could present one input vector to
each of the networks. For sequential vectors, the order in which the vectors
appear is important.

Simulation with Concurrent Inputs in a Static
Network

The simplest situation for simulating a network occurs when the network to be
simulated is static (has no feedback or delays). In this case, you need not be
concerned about whether or not the input vectors occur in a particular time
sequence, so you can treat the inputs as concurrent. In addition, the problem is
made even simpler by assuming that the network has only one input vector.
Use the following network as an example.

Inputs Linear Neuron

r N A\
pl Wl,l
>2 B amae
p2 W1,2 lb
— 1 J

a=purelin(Wp+b)

Suppose that the network simulation data set consists of @ = 4 concurrent
vectors:

Data Structures

Concurrent vectors are presented to the network as a single matrix:
P=1[1223; 2131];
Suppose that this network typically outputs -100, 50 and 100. This is arbitrary

for this example. If you were solving a real problem, you would have actual
values.

T =1[-100 50 100];

To set up this feedforward network, use the following command:

net = newlin(P,T);

For simplicity assign the weight matrix and bias to be

W = [12Jandb: [0}

The commands for these assignments are

net.IW{1,1} = [1 2];
net.b{1} = 0;

You can now simulate the network:

A = sim(net,P)
A =
5 4 8 5

A single matrix of concurrent vectors is presented to the network, and the
network produces a single matrix of concurrent vectors as output. The result
would be the same if there were four networks operating in parallel and each
network received one of the input vectors and produced one of the outputs. The
ordering of the input vectors is not important, because they do not interact with
each other.

Simulation with Sequential Inputs in a Dynamic
Network

When a network contains delays, the input to the network would normally be
a sequence of input vectors that occur in a certain time order. To illustrate this
case, here is a simple network that contains one delay.

2-15

2 Neuron Model and Network Architectures

2-16

Inputs Linear Neuron

N A

p(t) w

n(t) a(t)
>

> A

_/ \ J
a(t) = w, p()+w, p(t-1)

Suppose that the input sequence is
pl=[1], p2=[2], P3=[3], P4 = [4]
Sequential inputs are presented to the network as elements of a cell array:

P ={123 4};

Suppose you know that the typical output values include 10, 3 and -7. These
values are arbitrary for this example; if you were solving a real problem, you
would have real output values.

T = {10, 3, 7};
The following commands create this network:

net = newlin(P,T,[0 1]);
net.biasConnect = 0;

Assign the weight matrix to be

W=[1g
The command is
net.IW{1,1} = [1 2];
You can now simulate the network:

A = sim(net,P)

Data Structures

[1] [4] [71] [10]

You input a cell array containing a sequence of inputs, and the network
produces a cell array containing a sequence of outputs. The order of the inputs
is important when they are presented as a sequence. In this case, the current
output is obtained by multiplying the current input by 1 and the preceding
input by 2 and summing the result. If you were to change the order of the
inputs, the numbers obtained in the output would change.

Simulation with Concurrent Inputs in a Dynamic
Network

If you were to apply the same inputs as a set of concurrent inputs instead of a
sequence of inputs, you would obtain a completely different response.
(However, it is not clear why you would want to do this with a dynamic
network.) It would be as if each input were applied concurrently to a separate
parallel network. For the previous example, “Simulation with Sequential
Inputs in a Dynamic Network” on page 2-15, if you use a concurrent set of
inputs you have

pp=[1], p2=12, P3=[3], py=[4]

which can be created with the following code:

P=11234];

When you simulate with concurrent inputs, you obtain

A = sim(net,P)
A =
1 2 3 4

The result is the same as if you had concurrently applied each one of the inputs
to a separate network and computed one output. Note that because you did not
assign any initial conditions to the network delays, they were assumed to be 0.
For this case the output is simply 1 times the input, because the weight that
multiplies the current input is 1.

In certain special cases, you might want to simulate the network response to
several different sequences at the same time. In this case, you would want to

2-17

2 Neuron Model and Network Architectures

2-18

present the network with a concurrent set of sequences. For example, suppose
you wanted to present the following two sequences to the network:

(1) = [1], P1(2) = [2], P1(3) = [8], P1(4) = [4]
Pa(1) = [4], Pa(2) = [3], Pa(3) = [2], Pa(4) = [1]

The input P should be a cell array, where each element of the array contains
the two elements of the two sequences that occur at the same time:

P ={[14] [2 3] [3 2] [4 1]};
You can now simulate the network:

A = sim(net,P);
The resulting network output would be

A= {[1 4] [4 11] [7 8] [10 5]}

As you can see, the first column of each matrix makes up the output sequence
produced by the first input sequence, which was the one used in an earlier
example. The second column of each matrix makes up the output sequence
produced by the second input sequence. There is no interaction between the
two concurrent sequences. It is as if they were each applied to separate
networks running in parallel.

The following diagram shows the general format for the input P to the sim
function when there are @ concurrent sequences of T'S time steps. It covers all
cases where there is a single input vector. Each element of the cell array is a
matrix of concurrent vectors that correspond to the same point in time for each
sequence. If there are multiple input vectors, there will be multiple rows of
matrices in the cell array.

Qth Sequence

\J y v

A

A A

First Sequence

Data Structures

In this section, you apply sequential and concurrent inputs to dynamic
networks. In “Simulation with Concurrent Inputs in a Static Network” on
page 2-14, you applied concurrent inputs to static networks. It is also possible
to apply sequential inputs to static networks. It does not change the simulated
response of the network, but it can affect the way in which the network is
trained. This will become clear in “Training Styles” on page 2-20.

2-19

2 Neuron Model and Network Architectures

2-20

Training Styles

This section describes two different styles of training. In incremental training
the weights and biases of the network are updated each time an input is
presented to the network. In batch training the weights and biases are only
updated after all the inputs are presented.

Incremental Training (of Adaptive and Other
Networks)

Incremental training can be applied to both static and dynamic networks,
although it is more commonly used with dynamic networks, such as adaptive
filters. This section demonstrates how incremental training is performed on
both static and dynamic networks.

Incremental Training with Static Networks

Consider again the static network used for the first example. You want to train
it incrementally, so that the weights and biases are updated after each input is
presented. In this case you use the function adapt, and the inputs and targets
are presented as sequences.

Suppose you want to train the network to create the linear function:
t = 2p1 + Py

Then for the previous inputs,

e

the targets would be

ty=[4], ta=[5], t5=[7], ts = [7]

For incremental training, you present the inputs and targets as sequences:

P = {[1;2] [2;1] [2;3] [3;1]};
T=1{4577};

Training Styles

First, set up the network with zero initial weights and biases. Also, set the
initial learning rate to zero to show the effect of incremental training.

net = newlin(P,T,0,0);
net.IW{1,1} = [0 O];
net.b{1} = 0;

Recall from “Simulation with Concurrent Inputs in a Static Network” on
page 2-14 that, for a static network, the simulation of the network produces the
same outputs whether the inputs are presented as a matrix of concurrent
vectors or as a cell array of sequential vectors. However, this is not true when
training the network. When you use the adapt function, if the inputs are
presented as a cell array of sequential vectors, then the weights are updated as
each input is presented (incremental mode). As shown in the next section, if the
inputs are presented as a matrix of concurrent vectors, then the weights are
updated only after all inputs are presented (batch mode).

You are now ready to train the network incrementally.
[net,a,e,pf] = adapt(net,P,T);

The network outputs remain zero, because the learning rate is zero, and the
weights are not updated. The errors are equal to the targets:

a = [0] [0] [0] (0]
e = [4] [5] [7] [7]

If you now set the learning rate to 0.1 you can see how the network is adjusted
as each input is presented:

net.inputWeights{1,1}.learnParam.1lr=0.1;
net.biases{1,1}.learnParam.1r=0.1;
[net,a,e,pf] = adapt(net,P,T);

a = [0] [2] [6] [5.8]

e = [4] [3] [1] [1.2]

The first output is the same as it was with zero learning rate, because no
update is made until the first input is presented. The second output is different,
because the weights have been updated. The weights continue to be modified
as each error is computed. If the network is capable and the learning rate is set
correctly, the error is eventually driven to zero.

2-21

2 Neuron Model and Network Architectures

2-22

Incremental Training with Dynamic Networks
You can also train dynamic networks incrementally. In fact, this would be the
most common situation.

Here are the initial input Pi and the inputs P and targets T as elements of cell
arrays.

Pi = {1};
P = {2 3 4};
T= {35 7};

Create a linear network with one delay at the input, as used in a previous
example. Initialize the weights to zero and set the learning rate to 0.1.

net = newlin(P,T,[0 1],0.1);
net.IW{1,1} = [0 O];
net.biasConnect = 0;

You want to train the network to create the current output by summing the
current and the previous inputs. This is the same input sequence you used in
the previous example (using sim) with the exception that you assign the first
term in the sequence as the initial condition for the delay. You can now
sequentially train the network using adapt.

[net,a,e,pf] = adapt(net,P,T,Pi);
a = [0] [2.4] [7.98]
e = [3] [2.6] [-0.98]

The first output is zero, because the weights have not yet been updated. The
weights change at each subsequent time step.

Batch Training

Batch training, in which weights and biases are only updated after all the
inputs and targets are presented, can be applied to both static and dynamic
networks. Both types of networks are discussed in this section.

Batch Training with Static Networks

Batch training can be done using either adapt or train, although train is
generally the best option, because it typically has access to more efficient
training algorithms. Incremental training can only be done with adapt; train
can only perform batch training.

Training Styles

For batch training of a static network with adapt, the input vectors must be
placed in one matrix of concurrent vectors.

P=1[1223;2131];
T=1[457T7],;

Begin with the static network used in previous examples. The learning rate is
set to 0.1.

net = newlin(P,T7,0,0.1);
net.IW{1,1} = [0 O];
net.b{1} = 0;

When you call adapt, it invokes trains (the default adaptation function for the
linear network) and 1earnwh (the default learning function for the weights and
biases). trains uses Widrow-Hoff learning.

[net,a,e,pf] = adapt(net,P,T);
a=0000
e=4577

Note that the outputs of the network are all zero, because the weights are not
updated until all the training set has been presented. If you display the
weights, you find

»net.IW{1,1}
ans = 4.9000 4.1000
»net.b{1}
ans =
2.3000

This is different from the result after one pass of adapt with incremental
updating.

Now perform the same batch training using train. Because the Widrow-Hoff
rule can be used in incremental or batch mode, it can be invoked by adapt or
train. (There are several algorithms that can only be used in batch mode (e.g.,
Levenberg-Marquardt), so these algorithms can only be invoked by train.)

For this case, the input vectors can be in a matrix of concurrent vectors or in a
cell array of sequential vectors. Because the network is static and because
train always operates in batch mode, train converts any cell array of
sequential vectors to a matrix of concurrent vectors. Concurrent mode

2-23

2 Neuron Model and Network Architectures

2-24

operation is used whenever possible because it has a more efficient MATLAB
implementation.

P=1[1223;2131];
T=1[4577];

The network is set up in the same way.

net = newlin(P,T7,0,0.1);
net.IW{1,1} = [0 0];
net.b{1} = 0;

Now you are ready to train the network. Train it for only one epoch, because
you used only one pass of adapt. The default training function for the linear
network is trainb, and the default learning function for the weights and biases
is learnwh, so you should get the same results obtained using adapt in the
previous example, where the default adaptation function was trains.

net.inputWeights{1,1}.learnParam.lr = 0.1;
net.biases{1}.learnParam.lr = 0.1;
net.trainParam.epochs = 1;

net = train(net,P,T);

If you display the weights after one epoch of training, you find

»net.IW{1,1}
ans = 4.9000 4.1000
»net.b{1}
ans =
2.3000

This is the same result as the batch mode training in adapt. With static
networks, the adapt function can implement incremental or batch training,
depending on the format of the input data. If the data is presented as a matrix
of concurrent vectors, batch training occurs. If the data is presented as a
sequence, incremental training occurs. This is not true for train, which always
performs batch training, regardless of the format of the input.

Batch Training with Dynamic Networks

Training static networks is relatively straightforward. If you use train the
network is trained in batch mode and the inputs are converted to concurrent
vectors (columns of a matrix), even if they are originally passed as a sequence
(elements of a cell array). If you use adapt, the format of the input determines

Training Styles

the method of training. If the inputs are passed as a sequence, then the
network is trained in incremental mode. If the inputs are passed as concurrent
vectors, then batch mode training is used.

With dynamic networks, batch mode training is typically done with train only,
especially if only one training sequence exists. To illustrate this, consider again
the linear network with a delay. Use a learning rate of 0.02 for the training.
(When using a gradient descent algorithm, you typically use a smaller learning
rate for batch mode training than incremental training, because all the
individual gradients are summed before determining the step change to the
weights.)

Pi = {1};
P = {2 3 4};
T = {3 5 6};

net = newlin(P,T,[0 1],0.02);
net.IW{1,1} = [0 O];
net.biasConnect = 0;
net.trainParam.epochs = 1;

You want to train the network with the same sequence used for the
incremental training earlier, but this time you want to update the weights only
after all the inputs are applied (batch mode). The network is simulated in
sequential mode, because the input is a sequence, but the weights are updated
in batch mode.

net = train(net,P,T,Pi);

The weights after one epoch of training are

»net.IW{1,1}
ans = 0.9000 0.6200

These are different weights than you would obtain using incremental training,
where the weights would be updated three times during one pass through the
training set. For batch training the weights are only updated once in each
epoch.

Training Tip

The show parameter allows you to set the number of epochs between feedback
during training. For instance, this code gives you training status information
every 35 epochs when the network is later trained with train.

2-25

2 Neuron Model and Network Architectures

net.trainParam.show= 35;

Sometimes it is convenient to disable all training displays. That is done by
setting show to NaN.

net.trainParam.show = NaN;

2-26

Perceptrons

Introduction (p. 3-2)

Neuron Model (p. 3-3)
Perceptron Architecture (p. 3-5)
Creating a Perceptron (newp) (p. 3-6)

Learning Rules (p. 3-13)

Perceptron Learning Rule (learnp) (p. 3-14)
Training (train) (p. 3-17)

Limitations and Cautions (p. 3-22)
Graphical User Interface (p. 3-24)

Introduces the chapter, and provides information on
additional resources

Provides a model of a perceptron neuron
Graphically displays perceptron architecture

Describes how to create a perceptron in Neural
Network Toolbox

Introduces network learning rules

Discusses the perceptron learning rule learnp
Discusses the training function train

Describes the limitations of perceptron networks

Discusses the Network/Data Manager GUI

3 Perceptrons

3-2

Introduction

This chapter has a number of objectives. First it introduces you to learning
rules, methods of deriving the next changes that might be made in a network,
and training, a procedure whereby a network is actually adjusted to do a
particular job. Along the way are described a toolbox function to create a simple
perceptron network and functions to initialize and simulate such networks.
The perceptron is used as a vehicle for tying these concepts together.

Rosenblatt [Rose61] created many variations of the perceptron. One of the
simplest was a single-layer network whose weights and biases could be trained
to produce a correct target vector when presented with the corresponding input
vector. The training technique used is called the perceptron learning rule. The
perceptron generated great interest due to its ability to generalize from its
training vectors and learn from initially randomly distributed connections.
Perceptrons are especially suited for simple problems in pattern classification.
They are fast and reliable networks for the problems they can solve. In
addition, an understanding of the operations of the perceptron provides a good
basis for understanding more complex networks.

This chapter defines what is meant by a learning rule, explains the perceptron
network and its learning rule, and tells you how to initialize and simulate
perceptron networks.

The discussion of perceptrons in this chapter is necessarily brief. For a more
thorough discussion, see Chapter 4, “Perceptron Learning Rule,” of
[HDB1996], which discusses the use of multiple layers of perceptrons to solve
more difficult problems beyond the capability of one layer.

You might also want to refer to the original book on the perceptron, Rosenblatt,
F., Principles of Neurodynamics, Washington D.C., Spartan Press, 1961
[Rose61].

Important Perceptron Functions

You can create perceptron networks with the function newp. These networks
can be initialized, simulated, and trained with init, sim, and train. “Neuron
Model” on page 3-3 describes how perceptrons work and introduces these
functions.

Neuron Model

Neuron Model

A perceptron neuron, which uses the hard-limit transfer function hardlim, is
shown below.

Input Perceptron Neuron

N7 N\
Where
P, W
P, 11 N a R = number of
b » [—>» clementsin

input vector

2
W lb

w1 J
a= hardlim(Wp+Db)

Each external input is weighted with an appropriate weight wy;, and the sum
of the weighted inputs is sent to the hard-limit transfer function, which also
has an input of 1 transmitted to it through the bias. The hard-limit transfer
function, which returns a 0 or a 1, is shown below.

+1

a = hardlim(n)

Hard-Limit Transfer Function

The perceptron neuron produces a 1 if the net input into the transfer function
is equal to or greater than 0; otherwise it produces a 0.

The hard-limit transfer function gives a perceptron the ability to classify input
vectors by dividing the input space into two regions. Specifically, outputs will
be 0 if the net input n is less than 0, or 1 if the net input » is 0 or greater. The
input space of a two-input hard limit neuron with the weights

wyq = -1, wy g = 1 and a bias b = 1 is shown below.

3-3

3 Perceptrons

3-4

Wptb >0
+1 a=1
Wptb=0
a=0

Wp+b<0

.—
a=0

- 1,2
/ -1 ' Where... W11=-1 and b=+1

w =+l
12

Two classification regions are formed by the decision boundary line L at

Wp +b = 0. This line is perpendicular to the weight matrix W and shifted
according to the bias b. Input vectors above and to the left of the line L will
result in a net input greater than 0 and, therefore, cause the hard-limit neuron
to output a 1. Input vectors below and to the right of the line L cause the neuron
to output 0. You can pick weight and bias values to orient and move the
dividing line so as to classify the input space as desired.

Hard-limit neurons without a bias will always have a classification line going
through the origin. Adding a bias allows the neuron to solve problems where
the two sets of input vectors are not located on different sides of the origin. The
bias allows the decision boundary to be shifted away from the origin, as shown
in the plot above.

You might want to run the demonstration program nnd4db. With it you can
move a decision boundary around, pick new inputs to classify, and see how the
repeated application of the learning rule yields a network that does classify the
input vectors properly.

Perceptron Architecture

Perceptron Architecture

The perceptron network consists of a single layer of S perceptron neurons
connected to R inputs through a set of weights w; ;, as shown below in two
forms. As before, the network indices i and j indicate that w; ; is the strength of
the connection from the jth input to the ith neuron.

Input Perceptron Layer

Input Perceptron Layer

R

%

Sx1

I

A\ N7
a,
P
} Rx1 W
SXR
a, 1-) b
> R Sx1
. —/ \
ds

a = hardlim(Wp + b)

_/ \ J
a = hardlim(Wp + b)

> Where

R = number of elements in input

S = number of neurons in layer

The perceptron learning rule described shortly is capable of training only a

single layer. Thus only one-layer networks are considered here. This restriction
places limitations on the computation a perceptron can perform. The types of
problems that perceptrons are capable of solving are discussed in “Limitations

and Cautions” on page 3-22.

3 Perceptrons

Creating a Perceptron (newp)
A perceptron can be created with the function newp,
net = newp(P,T)
where input arguments are as follows:

® P is an R-by-Q matrix of Q input vectors of R elements each.
¢ Tis an S-by-Q matrix of Q target vectors of S elements each.
Commonly the hardlim function is used in perceptrons, so it is the default.

The code below creates a perceptron network with a single one-element input
vector with the values 0 and 2, and one neuron with outputs that can be either

Oor 1.
P =10 2];
T =101];

net = newp(P,T);

You can see what network has been created by executing the following code:

inputweights = net.inputweights{1,1}

which yields

inputweights
delays: 0
initFcn: 'initzero'
learn: 1
learnFcn: 'learnp'’
learnParam: []
size: [1 1]
userdata: [1x1 struct]
weightFcn: 'dotprod’
weightParam: [1x1 struct]

The default learning function is learnp, which is discussed in “Perceptron
Learning Rule (learnp)” on page 3-14. The net input to the hardlim transfer
function is dotprod, which generates the product of the input vector and weight
matrix and adds the bias to compute the net input.

3-6

Creating a Perceptron (newp)

The default initialization function initzero is used to set the initial values of
the weights to zero.

3-7

3 Perceptrons

3-8

Similarly,

biases = net.biases{1}

gives

biases
initFcn: 'initzero'
learn: 1
learnFcn: 'learnp'
learnParam: []
size: 1
userdata: [1x1 struct]

You can see that the default initialization for the bias is also 0.

Simulation (sim)
This section shows how sim works using a simple problem.
Suppose that you take a perceptron with a single two-element input vector,

such as discussed in the decision boundary figure on page 3-4. This perceptron
outputs the values 0 and 1.

Define the network using the following commands:

P=1[-22;-22];
T =101];
net = newp(P,[0 1]);

The network includes zero weights and biases. If you want weights and biases
with values other than zero, you have to create them.

Set the two weights and the one bias to-1, 1, and 1, as they were in the decision
boundary figure using the following commands:

net.IW{1,1}= [-1 1];
net.b{1} = [1];

Creating a Perceptron (newp)

To make sure that these parameters were set correctly, check them with

net.IW{1,1}
ans =

-1 1
net.b{1}
ans =

3-9

3 Perceptrons

Now see if the network responds to two signals, one on each side of the
perceptron boundary.

p1 = [151];
al = sim(net,p1)
al =

and for

p2
a2
a2

[15-11;
sim(net,p2)

0

Sure enough, the perceptron classified the two inputs correctly.

You could present the two inputs in a sequence and get the outputs in a
sequence as well.

p3 = {[1;1] [15-11};
a3 = sim(net,p3)
a3 =

(1] (0]

Initialization (init)
You can use the function init to reset the network weights and biases to their
original values. Suppose, for instance, that you start with the network

net = newp([-2 2;-2 2],[0 1]);

Now check the weights using the following command:

wts = net.IW{1,1}

which gives, as expected,

wts =
0 0

In the same way, you can verify that the bias is 0 with

3-10

Creating a Perceptron (newp)

bias = net.b{1}
which gives
bias =
0

Now set the weights to the values 3 and 4 and the bias to the value 5 with

net.IW{1,1} = [3,4];
net.b{1} = 5;

Recheck the weights and bias as shown above to verify that the change has
been made. Sure enough,

wts =

bias
5
Now use init to reset the weights and bias to their original values.
net = init(net);
You can check as shown above to verify that.

wts =

bias
0

You can change the way that a perceptron is initialized with init. For
instance, you can redefine the network input weights and bias initFcns as
rands, and then apply init as shown below.

net.inputweights{1,1}.initFcn = 'rands';
net.biases{1}.initFcn = 'rands';
net = init(net);

3-11

3 Perceptrons

Now check the weights and bias.

wts =
-0.2371 -0.8976
biases =
0.0775
You can see that the weights and bias are assigned random numbers.

3-12

Llearning Rules

Learning Rules

A learning rule is defined as a procedure for modifying the weights and biases
of a network. (This procedure can also be referred to as a training algorithm.)
The learning rule is applied to train the network to perform some particular
task. Learning rules in this toolbox fall into two broad categories: supervised
learning, and unsupervised learning.

In supervised learning, the learning rule is provided with a set of examples (the
training set) of proper network behavior

{plltl} > {p27t2}>) {vatQ}

where p q is an input to the network, and t is the corresponding correct
(target) output. As the inputs are applied to the network, the network outputs
are compared to the targets. The learning rule is then used to adjust the
weights and biases of the network in order to move the network outputs closer
to the targets. The perceptron learning rule falls in this supervised learning
category.

In unsupervised learning, the weights and biases are modified in response to
network inputs only. There are no target outputs available. Most of these
algorithms perform clustering operations. They categorize the input patterns
into a finite number of classes. This is especially useful in such applications as
vector quantization.

3-13

3 Perceptrons

3-14

Perceptron Learning Rule (learnp)

Perceptrons are trained on examples of desired behavior. The desired behavior
can be summarized by a set of input, output pairs

Pity,poty,.., PQtQ

where p is an input to the network and t is the corresponding correct (target)
output. The objective is to reduce the error e, which is the difference t— a
between the neuron response a and the target vector t. The perceptron learning
rule learnp calculates desired changes to the perceptron’s weights and biases,
given an input vector p and the associated error e. The target vector t must
contain values of either 0 or 1, because perceptrons (with hardlim transfer
functions) can only output these values.

Each time learnp is executed, the perceptron has a better chance of producing
the correct outputs. The perceptron rule is proven to converge on a solution in
a finite number of iterations if a solution exists.

If a bias is not used, learnp works to find a solution by altering only the weight
vector w to point toward input vectors to be classified as 1 and away from
vectors to be classified as 0. This results in a decision boundary that is
perpendicular to w and that properly classifies the input vectors.

There are three conditions that can occur for a single neuron once an input
vector p is presented and the network’s response a is calculated:

CASE 1. If an input vector is presented and the output of the neuron is correct
(a=tande=1t-a=0), then the weight vector w is not altered.

CASE 2. If the neuron output is 0 and should have been 1 (a=0and t = 1, and
e =t —a=1), the input vector p is added to the weight vector w. This makes
the weight vector point closer to the input vector, increasing the chance that
the input vector will be classified as a 1 in the future.

CASE 3. If the neuron output is 1 and should have been 0 (a=1and t =0, and
e =t —a=-1), the input vector p is subtracted from the weight vector w. This
makes the weight vector point farther away from the input vector, increasing
the chance that the input vector will be classified as a 0 in the future.

Perceptron leamning Rule (learnp)

The perceptron learning rule can be written more succinctly in terms of the
error e = t — a and the change to be made to the weight vector Aw:

CASE 1. If e = 0, then make a change Aw equal to 0.
CASE 2. If e = 1, then make a change Aw equal to pT.

CASE 3. If e = -1, then make a change Aw equal to —pT.
All three cases can then be written with a single expression:

AW = (t-a)pT = epT

You can get the expression for changes in a neuron’s bias by noting that the
bias is simply a weight that always has an input of 1:

Ab = (t-a)(1l) = e

For the case of a layer of neurons you have
AW = (t-a)(p)T = e(p)T

and
Ab = (t-a) = e

The perceptron learning rule can be summarized as follows:

Wnew - Wold+epT
and
d
bnew - bol te
where e = t—-a.

Now try a simple example. Start with a single neuron having an input vector
with just two elements. Here are input vectors with the values -2 and 2, and
outputs with values 0 and 1.

net = newp([-2 2;-2 2],[0 1]);

To simplify matters, set the bias equal to 0 and the weights to 1 and -0.8.
net.b{1} = [0];

3-15

3 Perceptrons

w=1[1 -0.8];
net.IW{1,1} = w;

The input target pair is given by

p=11; 2];
t=[1];

You can compute the output and error with

a = sim(net,p)
a =
0
e = t-a
e =

and use the function learnp to find the change in the weights.

dw = learnp(w,p,[],[1,[1,[1,e5[1,[1,[1)
dw =
1 2

The new weights, then, are obtained as

w w + dw
W:

2.0000 1.2000

The process of finding new weights (and biases) can be repeated until there are
no errors. Recall that the perceptron learning rule is guaranteed to converge in
a finite number of steps for all problems that can be solved by a perceptron.
These include all classification problems that are linearly separable. The
objects to be classified in such cases can be separated by a single line.

You might want to try demo nnd4pr. It allows you to pick new input vectors and
apply the learning rule to classify them.

3-16

Training {train)

Training (train)

If sim and learnp are used repeatedly to present inputs to a perceptron, and to
change the perceptron weights and biases according to the error, the
perceptron will eventually find weight and bias values that solve the problem,
given that the perceptron can solve it. Each traversal through all the training
input and target vectors is called a pass.

The function train carries out such a loop of calculation. In each pass the
function train proceeds through the specified sequence of inputs, calculating
the output, error, and network adjustment for each input vector in the
sequence as the inputs are presented.

Note that train does not guarantee that the resulting network does its job. You
must check the new values of W and b by computing the network output for
each input vector to see if all targets are reached. If a network does not perform
successfully you can train it further by calling train again with the new
weights and biases for more training passes, or you can analyze the problem to
see if it is a suitable problem for the perceptron. Problems that cannot be solved
by the perceptron network are discussed in “Limitations and Cautions” on
page 3-22.

To illustrate the training procedure, work through a simple problem. Consider
a one-neuron perceptron with a single vector input having two elements:

Input Perceptron Neuron

N N

P W
! 11

H»J: a>

2
p2 W1,2 lb
NN v

= hardlim(Wp+Db)

This network, and the problem you are about to consider, are simple enough
that you can follow through what is done with hand calculations if you want.
The problem discussed below follows that found in [HDB1996].

3-17

3 Perceptrons

3-18

Suppose you have the following classification problem and would like to solve
it with a single vector input, two-element perceptron network.

T T

Use the initial weights and bias. Denote the variables at each step of this
calculation by using a number in parentheses after the variable. Thus, above,
the initial values are W(0) and 5(0).

W) =1]oo b0)=0

Start by calculating the perceptron’s output a for the first input vector py,
using the initial weights and bias.

Q
|

= hardlim(W(0)p; +b(0))

hardlim([() 0} B} + 0) = hardlim(0) = 1

The output a does not equal the target value ¢;, so use the perceptron rule to
find the incremental changes to the weights and biases based on the error.
e=t;-a=0-1=-1

AW = epy = (-1)[2 9] = [-2 -9
Ab =e=(-1) = -1

You can calculate the new weights and bias using the perceptron update rules.

old+epT - |:0 O:| + |:_2 _2j| = |:_2 _2] = W(1)

Wnew - W

old +

" = b e=0+(-1) = -1 = b(1)

Training {train)

Now present the next input vector, ps. The output is calculated below.

a = hardlim(W(1)py +b(1))

= hardlim([_g _2] {_ﬂ —lj = hardlim(1l) = 1

On this occasion, the target is 1, so the error is zero. Thus there are no changes
in weights or bias, so W(2) = W(1) = [_2 _2:| and p(2) = p(1) = -1.

You can continue in this fashion, presenting p3 next, calculating an output and
the error, and making changes in the weights and bias, etc. After making one
pass through all of the four inputs, you get the values W(4) = [_3 _1] and
b(4) = 0. To determine whether a satisfactory solution is obtained, make one
pass through all input vectors to see if they all produce the desired target
values. This is not true for the fourth input, but the algorithm does converge on
the sixth presentation of an input. The final values are

W(6) = [_2 _3} and 5(6) = 1
This concludes the hand calculation. Now, how can you do this using the train

function?

The following code defines a perceptron like that shown in the previous figure,
with initial weights and bias values of 0.

net = newp([-2 2;-2 2],[0 1]);

Consider the application of a single input.

p=1[2; 2];
having the target
t = [0];

Set epochs to 1, so that train goes through the input vectors (only one here)
just one time.

net.trainParam.epochs = 1;
net = train(net,p,t);

3-19

3 Perceptrons

The new weights and bias are

w =

Thus, the initial weights and bias are 0, and after training on only the first
vector, they have the values [-2 -2] and -1, just as you hand calculated.

Now apply the second input vector p, . The output is 1, as it will be until the
weights and bias are changed, but now the target is 1, the error will be 0, and
the change will be zero. You could proceed in this way, starting from the
previous result and applying a new input vector time after time. But you can
do this job automatically with train.

Apply train for one epoch, a single pass through the sequence of all four input
vectors. Start with the network definition.

net = newp([-2 2;-2 2],[0 1]);
net.trainParam.epochs = 1;
The input vectors and targets are

[[2;2] [1;-2] [-2;2] [-1;1]]
[0101]

p
t

Now train the network with

net = train(net,p,t);

The new weights and bias are

W -
-3 -1

0

Note that this is the same result as you got previously by hand. Finally,
simulate the trained network for each of the inputs.

a
a =

sim(net,p)

0 0 1 1

3-20

Training {train)

The outputs do not yet equal the targets, so you need to train the network for
more than one pass. Try more epochs. This run gives the following results:

TRAINC, Epoch 0/20
TRAINC, Epoch 2/20
TRAINC, Performance goal met.

Thus, the network was trained by the time the inputs were presented on the
third epoch. (As you know from hand calculation, the network converges on the
presentation of the sixth input vector. This occurs in the middle of the second
epoch, but it takes the third epoch to detect the network convergence.) The final
weights and bias are

-2 -3

1
The simulated output and errors for the various inputs are

a =

0 1 0 1
error = a-t
error =

0 0 0 0

You confirm that the training procedure is successful. The network converges
and produces the correct target outputs for the four input vectors.

The default training function for networks created with newp is trainc. (You
can find this by executing net.trainFcn.) This training function applies the
perceptron learning rule in its pure form, in that individual input vectors are
applied individually, in sequence, and corrections to the weights and bias are
made after each presentation of an input vector. Thus, perceptron training
with train will converge in a finite number of steps unless the problem
presented cannot be solved with a simple perceptron.

The function train can be used in various ways by other networks as well. Type
help train to read more about this basic function.

You might want to try various demonstration programs. For instance, demop1
illustrates classification and training of a simple perceptron.

3-21

3 Perceptrons

3-22

Limitations and Cautions

Perceptron networks should be trained with adapt, which presents the input
vectors to the network one at a time and makes corrections to the network
based on the results of each presentation. Use of adapt in this way guarantees
that any linearly separable problem is solved in a finite number of training
presentations.

As noted in the previous pages, perceptrons can also be trained with the
function train, which is discussed in detail in the next chapter. Commonly
when train is used for perceptrons, it presents the inputs to the network in
batches, and makes corrections to the network based on the sum of all the
individual corrections. Unfortunately, there is no proof that such a training
algorithm converges for perceptrons. On that account the use of train for
perceptrons is not recommended.

Perceptron networks have several limitations. First, the output values of a
perceptron can take on only one of two values (0 or 1) because of the hard-limit
transfer function. Second, perceptrons can only classify linearly separable sets
of vectors. If a straight line or a plane can be drawn to separate the input
vectors into their correct categories, the input vectors are linearly separable. If
the vectors are not linearly separable, learning will never reach a point where
all vectors are classified properly. However, it has been proven that if the
vectors are linearly separable, perceptrons trained adaptively will always find
a solution in finite time. You might want to try demop6. It shows the difficulty
of trying to classify input vectors that are not linearly separable.

It is only fair, however, to point out that networks with more than one
perceptron can be used to solve more difficult problems. For instance, suppose
that you have a set of four vectors that you would like to classify into distinct
groups, and that two lines can be drawn to separate them. A two-neuron
network can be found such that its two decision boundaries classify the inputs
into four categories. For additional discussion about perceptrons and to
examine more complex perceptron problems, see [HDB1996].

Outliers and the Normalized Perceptron Rule

Long training times can be caused by the presence of an outlier input vector
whose length is much larger or smaller than the other input vectors. Applying
the perceptron learning rule involves adding and subtracting input vectors
from the current weights and biases in response to error. Thus, an input vector

Limitations and Cautions

with large elements can lead to changes in the weights and biases that take a
long time for a much smaller input vector to overcome. You might want to try
demop4 to see how an outlier affects the training.

By changing the perceptron learning rule slightly, you can make training times
insensitive to extremely large or small outlier input vectors.

Here is the original rule for updating weights:

AW = (t-a)pT = epT

As shown above, the larger an input vector p, the larger its effect on the weight
vector w. Thus, if an input vector is much larger than other input vectors, the
smaller input vectors must be presented many times to have an effect.

The solution is to normalize the rule so that the effect of each input vector on
the weights is of the same magnitude:

T T
AW = (t—-a P _ e
=g = Clpl

The normalized perceptron rule is implemented with the function learnpn,
which is called exactly like learnp. The normalized perceptron rule function
learnpn takes slightly more time to execute, but reduces the number of epochs
considerably if there are outlier input vectors. You might try demop5 to see how
this normalized training rule works.

3-23

3 Perceptrons

3-24

Graphical User Interface

Introduction to the GUI

The graphical user interface (GUI) is designed to be simple and user friendly.
A simple example will get you started.

You bring up a GUI Network/Data Manager window. This window has its own
work area, separate from the more familiar command-line workspace. Thus,
when using the GUI, you might export the GUI results to the (command-line)
workspace. Similarly, you might want to import results from the workspace to
the GUI.

Once the Network/Data Manager window is up and running, you can create a
network, view it, train it, simulate it, and export the final results to the
workspace. Similarly, you can import data from the workspace for use in the
GUI.

The following example deals with a perceptron network. It goes through all the
steps of creating a network and shows what you might expect to see as you go
along.

Create a Perceptron Network (nntool)

Create a perceptron network to perform the AND function in this example. It
has an input vector p= [0 0 1 1;0 1 0 1] and a target vector t=[0 0 0 1].
Call the network ANDNet. Once created, the network will be trained. You can
then save the network, its output, etc., by exporting it to the workspace.

Input and Target
To start, type nntool. The following window appears.

Graphical User Interface

) Network/Data Manager

Uk Input Data 1 Networks 4| Output Data

@ Target Data x Error Data:

) Input Delay States:) Layer Delay States

o | deen | &

Click Help to get started on a new problem and to see descriptions of the
buttons and lists.

First, define the network input, called p, having the value [0 01 1;0 1 0 1].
Thus, the network has a two-element input, and four sets of such two-element
vectors are presented to it in training. To define this data, click New, and a new
window, Create Network or Data, appears. Select the Data tab. Set the Name
to p, the Value to [0 01 1;0 1 0 1], and make sure that Data Type is set to
Inputs.

3-25

3 Perceptrons

3-26

% Create Network or Data B\E\B|

Network | Data
Name
P
Yalue Data Type
[0011; 0101)] (@) Inputs
C"Targets
() Input Delay States
C"Layer Delay States
) Outputs
C"Errors

Click Create and then click OK to create an input p. The Network/Data
Manager window appears, and p shows as an input.

Next create a network target. This time enter the variable name t, specify the
value [0 0 0 1], and click Target under Data Type. Again click Create and
OK. You will see in the resulting Network/Data Manager window that you now
have t as a target as well as the previous p as an input.

Create Network

Now create a new network and call it ANDNet. Select the Network tab. Enter
ANDNet under Name. Set the Network Type to Perceptron, for that is the kind
of network you want to create.

You can set the inputs to p, and the example targets to t.

You can use a hardlim transfer function with the output range [0, 1] that
matches the target values and a learnp learning function. For the Transfer
function, select hardlim. For the Learning function, select learnp. The
Create Network or Data window now looks like the following figure.

Graphical User Interface

% Create Network or Data

Metwark | Data

Hame

| ANDNat |

Hetwork Properties

Metwork Type: Perceptron V‘

Input data [4 v

Target data t v

Transfer function HARDLIM ~ +
Learning function: LEARNP +

[[view H ¥ Restore Defaults I

To examine the network, click View.

% View of New Network @

Close

The View of New Network shows that you are about to create a network with
a single input (composed of two elements), a hardlim transfer function, and a
single output. This is the desired perceptron network.

Now click Create and OK to generate the network. Now close the Create
Network or Data window. You see the Network/Data Manager window with
ANDNet listed as a network.

3-27

3 Perceptrons

3-28

Train the Perceptron

To train the network, click ANDNet to highlight it. Then click Open. This leads
to a new window, labeled Network: ANDNet. At this point you can see the

network again by clicking the View tab. You can also check on the initialization
by clicking the Initialize tab. Now click the Train tab. Specify the inputs and
output by clicking the Training Info tab and selecting p from the list of inputs
and t from the list of targets. The Network: ANDNet window should look like

i Network: ANDNet I‘:“E|g|

Yiew| Train | Simulate| Adapt | Reinitialize Weights | ViewEdit Waights

Training Info | ‘alidation and Testing | Training Parameters

Training Data Training Results
Inputs p v Outputs ANDMet_outputs
Targets t “ Errars ANDMet_errars

W Train Metwark

Note that the contents of the Training Results Outputs and Errors fields
have the name ANDNet_ prefixed to them. This makes them easy to identify
later when they are exported to the workspace.

While you are here, click the Training Parameters tab. It shows you
parameters such as the epochs and error goal. You can change these
parameters at this point if you want.

Graphical User Interface

Click Train Network to train the perceptron network. You will see the
following training results.

J Training with TRAINC E@

Performance is 0, Goal is 0
1 T T T T T

Train
09r — Validation |
Test

0.8

0.7

0.6

05+ .

04

Training-Blue Goal-Black

0.3

02r .

01r .

0 1 L L L L
0 1 2 3 4 4) 6

Stop Training 6 Epochs

Thus, the network was trained to zero error in six epochs. (Other kinds of
networks commonly do not train to zero error, and their errors can cover a
much larger range. On that account, their errors are plotted on a log scale
rather than on a linear scale such as that used above for perceptrons.)

You can confirm that the trained network does indeed give zero error by using
the input p and simulating the network. To do this, go to the Network:
ANDNet window and click the Simulate tab. Use the Inputs menu to specify
p as the input, and label the output as ANDNet outputsSim to distinguish it
from the training output. Click Simulate Network in the lower right corner

3-29

3 Perceptrons

and then click OK. Look at the Network/Data Manager and you will see a new
variable in the output: ANDNet outputsSim. Double-click it and a small
window, Data: ANDNet_outputsSim, appears with the value

[0 OO0 1]

Thus, the network does perform the AND of the inputs, giving a 1 as an output
only in this last case, when both inputs are 1. Close this window by clicking OK.

Export Perceptron Results to Workspace

To export the network outputs and errors to the MATLAB workspace, go back
to the Network/Data Manager window. The output and error for ANDNet are
listed in the Outputs and Errors fields on the right side. Next click Export.
This gives you an Export from Network/Data Manager window. Click

ANDNet outputs and ANDNet_errors to highlight them, and then click the
Export button. These two variables now should be in the MATLAB workspace.
To confirm this, go to the command line and type who to see all the defined
variables. The result should be

who
Your variables are:
ANDNet_errors ANDNet_outputs

You might type ANDNet_outputs and ANDNet_errors to obtain the following:

ANDNet_outputs =
0 0 0 1

and

ANDNet_errors =
0 0 0 0

You can export p, t, and ANDNet in a similar way. You might do this and check
using who to make sure that they got to the workspace.

Now that ANDNet is exported you can view the network description and
examine the network weight matrix. For instance, the command

ANDNet.iw{1,1}

3-30

Graphical User Interface

Similarly,
ANDNet.b{1}
yields

ans =

-3

Your network might yield a different result.

Clear Network/Data Window

You can clear the Network/Data Manager window by highlighting a variable
such as p and clicking the Delete button until all entries in the list boxes are
gone. By doing this, you start from a clean slate.

Alternatively, you can quit MATLAB. A restart with a new MATLAB, followed
by nntool, gives a clean Network/Data Manager window.

Recall however, that you exported p, t, etc., to the workspace from the
perceptron example. They are still there for your use even after you clear the
Network/Data Manager window.

Importing from the Command Line

To make things simple, quit MATLAB. Start it again, and type nntool to begin
a new session.

Create a new vector.

r= [0; 1; 2; 3]
r‘=

w NN =0

3-31

3 Perceptrons

Click Import and set the destination Name to r (to distinguish between the
variable named at the command line and the variable in the GUI). You will
have a window that looks like this:

& Import to Network/Data Manager

Source Select a Variable Destination

@Z' Irnpart frarm MATLAB workspace {no selection) MNarne

ANDMNet_outputs
O Load from disk file A P ;

. mport As:

(@) Input Data

CZ' Target Data

() Initial Input States
CZ' Initial Layer States
CZ' Output Data

() Error Data

[% Impart H @ Close]

Click Import and verify by looking at the Network/Data Manager window that
the variable r is there as an input.

Save a Variable to a File and Load It Later

Bring up the Network/Data Manager window and click New Network. Set the
name to mynet. Click Create. The network name mynet should appear in the
Network/Data Manager window. In this same window click Export. Select
mynet in the variable list of the Export or Save window and click Save. This
leads to the Save to a MAT File window. Save to the file mynetfile.

Now get rid of mynet in the GUI and retrieve it from the saved file. Go to the
Network/ Data Manager window, highlight mynet, and click Delete. Click
Import. This brings up the Import or Load to Network/Data Manager window.
Click the Load from Disk button and type mynetfile as the MAT-file Name.
Now click Browse. This brings up the Select MAT File window, with
mynetfile as an option that you can select as a variable to be imported.
Highlight mynetfile, click Open, and you return to the Import or Load to
Network/Data Manager window. On the Import As list, select Network.

3-32

Graphical User Interface

Highlight mynet and click Load to bring mynet to the GUI. Now mynet is back
in the GUI Network/Data Manager window.

3-33

3 Perceptrons

3-34

Linear Filters

Introduction (p. 4-2)

Neuron Model (p. 4-3)

Network Architecture (p. 4-4)
Least Mean Square Error (p. 4-8)

Linear System Design (newlind)
(p. 4-9)

Linear Networks with Delays (p. 4-10)

LMS Algorithm (learnwh) (p. 4-13)
Linear Classification (train) (p. 4-15)
Limitations and Cautions (p. 4-18)

Introduces the chapter

Provides a model of a linear neuron

Graphically displays linear network architecture
Discusses Least Mean Square Error supervised training

Discusses the linear system design function newlind

Introduces and graphically depicts tapped delay lines and
linear filters

Describes the Widrow-Hoff learning algorithm learnwh
Discusses the training function train

Describes the limitations of linear networks

4 Linear Filters

4-2

Introduction

The linear networks discussed in this chapter are similar to the perceptron, but
their transfer function is linear rather than hard-limiting. This allows their
outputs to take on any value, whereas the perceptron output is limited to either
0 or 1. Linear networks, like the perceptron, can only solve linearly separable
problems.

Here you design a linear network that, when presented with a set of given
input vectors, produces outputs of corresponding target vectors. For each input
vector, you can calculate the network’s output vector. The difference between
an output vector and its target vector is the error. You would like to find values
for the network weights and biases such that the sum of the squares of the
errors is minimized or below a specific value. This problem is manageable
because linear systems have a single error minimum. In most cases, you can
calculate a linear network directly, such that its error is a minimum for the
given input vectors and target vectors. In other cases, numerical problems
prohibit direct calculation. Fortunately, you can always train the network to
have a minimum error by using the least mean squares (Widrow-Hoff)
algorithm.

This chapter introduces newlin, a function that creates a linear layer, and
newlind, a function that designs a linear layer for a specific purpose.

You can type help linnet to see a list of linear network functions,
demonstrations, and applications.

The use of linear filters in adaptive systems is discussed in Chapter 10,
“Adaptive Filters and Adaptive Training.”

Neuron Model

Neuron Model

A linear neuron with R inputs is shown below.

Linear Neuron with

Input Vector Input
N N\
Where...
pl
P, N a R = number of
M > pAt—p elementsin

input vector

W b
1,R

U 1 J
a= purelin(Wp+b)

This network has the same basic structure as the perceptron. The only
difference is that the linear neuron uses a linear transfer function purelin.

"""""" Vo =

a= purelin(n)

Linear Transfer Function

The linear transfer function calculates the neuron’s output by simply returning
the value passed to it.

a = purelin(n) = purelin(Wp+b) = Wp+b

This neuron can be trained to learn an affine function of its inputs, or to find a
linear approximation to a nonlinear function. A linear network cannot, of
course, be made to perform a nonlinear computation.

4-3

4 Linear Filters

Network Architecture

The linear network shown below has one layer of S neurons connected to R

inputs through a matrix of weights W.

Layer of Linear
Input Neurons

a= purelin(wWp+b)

Input Layer of Linear Neurons

R Sx1 S
/| J
a= purelin(Wp+b)
Where... R = number of
elements in

input vector

S=number of
neurons in layer

Note that the figure on the right defines an S-length output vector a.

A single-layer linear network is shown. However, this network is just as
capable as multilayer linear networks. For every multilayer linear network,
there is an equivalent single-layer linear network.

Creating a Linear Neuron (newlin)
Consider a single linear neuron with two inputs. The diagram for this network

is shown below.

4-4

Network Architecture

Input Simple Linear Network

N A\
pl W1,1
> >
pz le2 lb
1 J

a = purelin(Wp+b)

The weight matrix W in this case has only one row. The network output is

a = purelin(n) = purelin(Wp+b) = Wp+b

or
a = wy Pyt wWy Py b

Like the perceptron, the linear network has a decision boundary that is
determined by the input vectors for which the net input n is zero. For n = 0 the
equation Wp + b = 0 specifies such a decision boundary, as shown below
(adapted with thanks from [HDB96]).

p2
a<0 \\ a>0
-b/w12
’ W
| -
Wp+b=0
» P
-b/w\ 1
1,1

Input vectors in the upper right gray area lead to an output greater than 0.
Input vectors in the lower left white area lead to an output less than 0. Thus,
the linear network can be used to classify objects into two categories. However,
it can classify in this way only if the objects are linearly separable. Thus, the
linear network has the same limitation as the perceptron.

4-5

4 Linear Filters

You can create this network using the following command, which specifies
typical input vectors of [-1; -1] and [1; 1] and typical outputs of [-1 1]. (These
values are arbitrary. For a real problem, use real values.)

net = newlin([-1 1; -1 1],[-1 1]);

The network weights and biases are set to zero by default. You can see the
current values with the commands

W = net.IW{1,1}
W =
0 0
and
b= net.b{1}
b:
0

However, you can give the weights any values that you want, such as 2 and 3,
respectively, with

net.IW{1,1} = [2 3];
W = net.IW{1,1}
W =

2 3

You can set and check the bias in the same way.

net.b{1} = [-4];
b = net.b{1}
b =

-4

You can simulate the linear network for a particular input vector. Try
p = [5;6];
You can find the network output with the function sim.

a = sim(net,p)
a =
24

4-6

Network Architecture

To summarize, you can create a linear network with newlin, adjust its
elements as you want, and simulate it with sim. You can find more about
newlin by typing help newlin.

4-7

4 Linear Filters

4-8

Least Mean Square Error

Like the perceptron learning rule, the least mean square error (LMS)
algorithm is an example of supervised training, in which the learning rule is
provided with a set of examples of desired network behavior:

{plv tl} » {pz! t2} 5 sy {pQ! tQ}

Here p, is an input to the network, and t is the corresponding target output.
q. . . .

As each input is applied to the network, the network output is compared to the

target. The error is calculated as the difference between the target output and

the network output. The goal is to minimize the average of the sum of these

errors.

Q Q
_ 1 2 1 2
mse = ékz e(k)” = ékz (t(R)—a(k))
=1 =1

The LMS algorithm adjusts the weights and biases of the linear network so as
to minimize this mean square error.

Fortunately, the mean square error performance index for the linear network
is a quadratic function. Thus, the performance index will either have one global
minimum, a weak minimum, or no minimum, depending on the characteristics
of the input vectors. Specifically, the characteristics of the input vectors
determine whether or not a unique solution exists.

You can find more about this topic in Chapter 10 of [HDB96].

Linear System Design (newlind)

Linear System Design (newlind)

Unlike most other network architectures, linear networks can be designed
directly if input/target vector pairs are known. You can obtain specific network
values for weights and biases to minimize the mean square error by using the
function newlind.

Suppose that the inputs and targets are

P=1[123];
T= [2.0 4.1 5.9];

Now you can design a network.
net = newlind(P,T);

You can simulate the network behavior to check that the design was done

properly.
Y = sim(net,P)
Y =

2.0500 4.0000 5.9500

Note that the network outputs are quite close to the desired targets.

You might try demolini. It shows error surfaces for a particular problem,
illustrates the design, and plots the designed solution.

You can also use the function newlind to design linear networks having delays
in the input. Such networks are discussed in “Linear Networks with Delays” on
page 4-10. First, however, delays must be discussed.

4-9

4 Linear Filters

Linear Networks with Delays

Tapped Delay Line

You need a new component, the tapped delay line, to make full use of the linear
network. Such a delay line is shown below. There the input signal enters from
the left and passes through N-1 delays. The output of the tapped delay line
(TDL) is an N-dimensional vector, made up of the input signal at the current
time, the previous input signal, etc.

jq
@)
=

pd (K

pd (K

T

pd (¥

T_D‘_ e

(

Linear Filter

You can combine a tapped delay line with a linear network to create the linear
filter shown.

4-10

Linear Networks with Delays

TDL Linear Layer
'R ' N
pd (K
pk) ®
l Wl,l
D | pa
W1,2 Z » 74
: & b
E)_ pd (0 / e
—/ N J
N
The output of the filter is given by
a(k) = purelin(Wp+b) = Z wyalk-i+1)+b
=1

The network shown is referred to in the digital signal processing field as a
finite impulse response (FIR) filter [WiSt85]. Look at the code used to generate
and simulate such a network.

Suppose that you want a linear layer that outputs the sequence T, given the
sequence P and two initial input delay states Pi.

P=1{121332};
Pi = {1 3};
T=1{564207 8};

4-11

4 Linear Filters

You can use newlind to design a network with delays to give the appropriate
outputs for the inputs. The delay initial outputs are supplied as a third
argument, as shown below.

net = newlind(P,T,Pi);

You can obtain the output of the designed network with
Y = sim(net,P,Pi)
to give
Y = [2.7297] [10.5405] [5.0090] [14.9550] [10.7838] [5.9820]

As you can see, the network outputs are not exactly equal to the targets, but
they are close and the mean square error is minimized.

4-12

LMS Algorithm (learnwh)

LMS Algorithm (learnwh)

The LMS algorithm, or Widrow-Hoff learning algorithm, is based on an
approximate steepest descent procedure. Here again, linear networks are
trained on examples of correct behavior.

Widrow and Hoff had the insight that they could estimate the mean square
error by using the squared error at each iteration. If you take the partial
derivative of the squared error with respect to the weights and biases at the kth
iteration, you have

6(! 2(k)e!k!
a1] 1]

forj =1,2,...,R and
e (k) ~ 944,220
0b
Next look at the partial derivative with respect to the error.

oe(k) - o[t(k)—a(k)] - 0
Gwl,j 6w1,j

[t(k) - (Wp(k) +b)]
LJj

or

8_egl_e_) = 0 \‘t(k)—[z wl,ipi(k)-'-bJ‘

0wy ;0w .
i=1

Here p;(k) is the ith element of the input vector at the kth iteration.
This can be simplified to

M = —p.(k
qwy P (k)
and
de(k) _ 4
ob

Finally, change the weight matrix, and the bias will be

4-13

4 Linear Filters

2ae(k)p(k)
and
2ae(k)

These two equations form the basis of the Widrow-Hoff (LMS) learning
algorithm.

These results can be extended to the case of multiple neurons, and written in
matrix form as

W(k+1) = W(k) + 2ae(k)p (k)

b(k+1) = b(k) +2ae(k)

Here the error e and the bias b are vectors, and o is a learning rate. If o is
large, learning occurs quickly, but if it is too large it can lead to instability and
errors might even increase. To ensure stable learning, the learning rate must
be less than the reciprocal of the largest eigenvalue of the correlation matrix
pr of the input vectors.

You might want to read some of Chapter 10 of [HDB96] for more information
about the LMS algorithm and its convergence.

Fortunately there is a toolbox function, learnwh, that does all the calculation
for you. It calculates the change in weights as

dw = lr*e*p'
and the bias change as
db = 1r*e
The constant 2, shown a few lines above, has been absorbed into the code

learning rate 1r. The function maxlinlr calculates this maximum stable
learning rate 1r as 0.999 * P' *P,

Type help learnwh and help maxlinlr for more details about these two
functions.

4-14

Linear Classification (train)

Linear Classification (train)

Linear networks can be trained to perform linear classification with the
function train. This function applies each vector of a set of input vectors and
calculates the network weight and bias increments due to each of the inputs
according to learnp. Then the network is adjusted with the sum of all these
corrections. Each pass through the input vectors is called an epoch. This
contrasts with adapt, discussed in Chapter 10, “Adaptive Filters and Adaptive
Training,” which adjusts weights for each input vector as it is presented.

Finally, train applies the inputs to the new network, calculates the outputs,
compares them to the associated targets, and calculates a mean square error.
If the error goal is met, or if the maximum number of epochs is reached, the
training is stopped, and train returns the new network and a training record.
Otherwise train goes through another epoch. Fortunately, the LMS algorithm
converges when this procedure is executed.

A simple problem illustrates this procedure. Consider the linear network
introduced earlier.

Input Simple Linear Network

N7 A\
pl W1,1
> SHF 2
pz W1,2 lb
— 1 J

a = purelin(Wp+b)

Suppose you have the classification problem presented in “Linear Filters” on
page 4-1.

r=[ghen=of o= [opre=1} = [0} foae Ja=1)

Here there are four input vectors, and you want a network that produces the
output corresponding to each input vector when that vector is presented.

4-15

4 Linear Filters

Use train to get the weights and biases for a network that produces the correct
targets for each input vector. The initial weights and bias for the new network
are 0 by default. Set the error goal to 0.1 rather than accept its default of 0.

P [21 -2 -1;2 -2 2 1];
T [0101];

net = newlin(P,T);
net.trainParam.goal= 0.1;
net = train(net,P,T);

The problem runs, producing the following training record.

TRAINB, Epoch 0/100, MSE 0.5/0.1.
TRAINB, Epoch 25/100, MSE 0.181122/0.1.
TRAINB, Epoch 50/100, MSE 0.111233/0.1.
TRAINB, Epoch 64/100, MSE 0.0999066/0.1.
TRAINB, Performance goal met.

Thus, the performance goal is met in 64 epochs. The new weights and bias are

weights = net.iw{1,1}
weights =
-0.0615 -0.2194
bias = net.b(1)
bias =
[0.5899]

You can simulate the new network as shown below.

A = sim(net, P)
A =
0.0282 0.9672 0.2741 0.4320

You can also calculate the error.

err = T - sim(net,P)
err =
-0.0282 0.0328 -0.2741 0.5680

Note that the targets are not realized exactly. The problem would have run
longer in an attempt to get perfect results had a smaller error goal been chosen,
but in this problem it is not possible to obtain a goal of 0. The network is limited
in its capability. See “Limitations and Cautions” on page 4-18 for examples of
various limitations.

4-16

Linear Classification (train)

This demonstration program, demolin2, shows the training of a linear neuron
and plots the weight trajectory and error during training.

You might also try running the demonstration program nnd101lc. It addresses
a classic and historically interesting problem, shows how a network can be
trained to classify various patterns, and shows how the trained network
responds when noisy patterns are presented.

4-17

4 Linear Filters

4-18

Limitations and Cautions

Linear networks can only learn linear relationships between input and output
vectors. Thus, they cannot find solutions to some problems. However, even if a
perfect solution does not exist, the linear network will minimize the sum of
squared errors if the learning rate 1r is sufficiently small. The network will
find as close a solution as is possible given the linear nature of the network’s
architecture. This property holds because the error surface of a linear network
is a multidimensional parabola. Because parabolas have only one minimum, a
gradient descent algorithm (such as the LMS rule) must produce a solution at
that minimum.

Linear networks have various other limitations. Some of them are discussed
below.

Overdetermined Systems

Consider an overdetermined system. Suppose that you have a network to be
trained with four one-element input vectors and four targets. A perfect solution
towp + b = t for each of the inputs might not exist, for there are four
constraining equations, and only one weight and one bias to adjust. However,
the LMS rule still minimizes the error. You might try demolin4 to see how this
is done.

Underdetermined Systems

Consider a single linear neuron with one input. This time, in demolin5, train
it on only one one-element input vector and its one-element target vector:

P =111.0];
T [0.5];

Note that while there is only one constraint arising from the single input/target
pair, there are two variables, the weight and the bias. Having more variables
than constraints results in an underdetermined problem with an infinite
number of solutions. You can try demolin5 to explore this topic.

Linearly Dependent Vectors

Normally it is a straightforward job to determine whether or not a linear
network can solve a problem. Commonly, if a linear network has at least as
many degrees of freedom (S*R+S = number of weights and biases) as

Limitations and Cautions

constraints (@ = pairs of input/target vectors), then the network can solve the
problem. This is true except when the input vectors are linearly dependent and
they are applied to a network without biases. In this case, as shown with
demonstration demolin6, the network cannot solve the problem with zero
error. You might want to try demolin6.

Too Large a Learning Rate

You can always train a linear network with the Widrow-Hoff rule to find the
minimum error solution for its weights and biases, as long as the learning rate
is small enough. Demonstration demolin7 shows what happens when a neuron
with one input and a bias is trained with a learning rate larger than that
recommended by max1linlr. The network is trained with two different learning
rates to show the results of using too large a learning rate.

4-19

4 Linear Filters

4-20

Backpropagation

Introduction (p. 5-2)
Architecture (p. 5-8)

Faster Training (p. 5-19)

Speed and Memory Comparison
(p. 5-34)

Improving Generalization (p. 5-52)

Preprocessing and Postprocessing
(p. 5-62)

Sample Training Session (p. 5-69)

Limitations and Cautions (p. 5-74)

An introduction to the chapter, including information on
additional resources

A discussion of the architecture, simulation, and training of
backpropagation networks

A discussion of several high-performance backpropagation
training algorithms

A comparison of the memory and speed of different
backpropagation training algorithms

A discussion of two methods for improving generalization of a
network — early stopping and regularization

A discussion of preprocessing routines that can be used to
make training more efficient, along with techniques to
measure the performance of a trained network

A tutorial consisting of a sample training session that
demonstrates many of the chapter concepts

A discussion of limitations and cautions to consider when
creating and training perceptron networks

S5 Backpropagation

5-2

Introduction

Backpropagation is the generalization of the Widrow-Hoff learning rule to
multiple-layer networks and nonlinear differentiable transfer functions. Input
vectors and the corresponding target vectors are used to train a network until
it can approximate a function, associate input vectors with specific output
vectors, or classify input vectors in an appropriate way as defined by you.
Networks with biases, a sigmoid layer, and a linear output layer are capable of
approximating any function with a finite number of discontinuities.

Standard backpropagation is a gradient descent algorithm, as is the
Widrow-Hoff learning rule, in which the network weights are moved along the
negative of the gradient of the performance function. The term
backpropagation refers to the manner in which the gradient is computed for
nonlinear multilayer networks. There are a number of variations on the basic
algorithm that are based on other standard optimization techniques, such as
conjugate gradient and Newton methods. Neural Network Toolbox implements
a number of these variations. This chapter explains how to use each of these
routines and discusses the advantages and disadvantages of each.

Properly trained backpropagation networks tend to give reasonable answers
when presented with inputs that they have never seen. Typically, a new input
leads to an output similar to the correct output for input vectors used in
training that are similar to the new input being presented. This generalization
property makes it possible to train a network on a representative set of
input/target pairs and get good results without training the network on all
possible input/output pairs. There are two features of Neural Network Toolbox
that are designed to improve network generalization: regularization and early
stopping. These features and their use are discussed in “Improving
Generalization” on page 5-52.

This chapter also discusses preprocessing and postprocessing techniques,
which can improve the efficiency of network training, in “Preprocessing and
Postprocessing” on page 5-62.

Before beginning this chapter you may want to read a basic reference on
backpropagation, such as D.E Rumelhart, G.E. Hinton, and R.J. Williams,
“Learning internal representations by error propagation,” D.E. Rumelhart and
dJ. McClelland, editors, Parallel Data Processing, Vol.1, Chapter 8, The M.I.T.
Press, Cambridge, MA, 1986, pp. 318-362. This subject is also covered in detail
in Chapters 11 and 12 of M.T. Hagan, H.B. Demuth, and M.H. Beale, Neural

Introduction

Network Design, ISBN 0-9717321-0-8 (available from John Stovall,
john.stovall@colorado.edu, 303.492.3648).

The primary objective of this chapter is to explain how to use the
backpropagation training functions in the toolbox to train feedforward neural
networks to solve specific problems. There are generally four steps in the
training process:

1 Assem